University Sétif 1 FERHAT ABBAS Faculty of Sciences
Détail de l'auteur
Auteur Hizia Bounadja |
Documents disponibles écrits par cet auteur
Ajouter le résultat dans votre panier Affiner la recherche
Titre : The asymptotic behavior of some hyperbolic PDE systems Type de document : texte imprimé Auteurs : Hizia Bounadja, Auteur ; Belkacem Said-houari, Directeur de thèse Année de publication : 2022 Importance : 1 vol (127 f .) Format : 29 cm Langues : Français (fre) Catégories : Thèses & Mémoires:Mathématique Mots-clés : Moore-Gibson-Thompson equation
Memory kernelIndex. décimale : 515- mathèmatique Résumé :
The main goal of this dissertation is to discuss the asymptotic behavior of some
hyperbolic PDE systems, precisely, we handled the well-posedness and stability of the solutions for
the Moore-Gibson-Thompson equation (MGT) employing various types of dissipation. In fact,
under an appropriate assumption on the coefficients of the systems together with the energy
method in Fourier space we have proved the well-posedness of the systems and built some
Lyapunov functionals which allowed us to get control estimates on the Fourier image of the
solution and led to the decay rate of the L2-norm of the solution.
On the other hand, by comparing the behavior of the resolvent of the Moore-Gibson-Thompson
system with the one of the resolvent of the wave equation with a frictional interior damping, we
furnish weaker conditions that guarantee exponential, polynomial or even logarithmic decay of the
solution of the Moore-Gibson-Thompson system in a bounded domain.Côte titre : MD/0168 En ligne : http://dspace.univ-setif.dz:8888/jspui/bitstream/123456789/3929/1/Hizia_Thesis_2 [...] Format de la ressource électronique : The asymptotic behavior of some hyperbolic PDE systems [texte imprimé] / Hizia Bounadja, Auteur ; Belkacem Said-houari, Directeur de thèse . - 2022 . - 1 vol (127 f .) ; 29 cm.
Langues : Français (fre)
Catégories : Thèses & Mémoires:Mathématique Mots-clés : Moore-Gibson-Thompson equation
Memory kernelIndex. décimale : 515- mathèmatique Résumé :
The main goal of this dissertation is to discuss the asymptotic behavior of some
hyperbolic PDE systems, precisely, we handled the well-posedness and stability of the solutions for
the Moore-Gibson-Thompson equation (MGT) employing various types of dissipation. In fact,
under an appropriate assumption on the coefficients of the systems together with the energy
method in Fourier space we have proved the well-posedness of the systems and built some
Lyapunov functionals which allowed us to get control estimates on the Fourier image of the
solution and led to the decay rate of the L2-norm of the solution.
On the other hand, by comparing the behavior of the resolvent of the Moore-Gibson-Thompson
system with the one of the resolvent of the wave equation with a frictional interior damping, we
furnish weaker conditions that guarantee exponential, polynomial or even logarithmic decay of the
solution of the Moore-Gibson-Thompson system in a bounded domain.Côte titre : MD/0168 En ligne : http://dspace.univ-setif.dz:8888/jspui/bitstream/123456789/3929/1/Hizia_Thesis_2 [...] Format de la ressource électronique : Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité DM/0168 DM/0168 Thèse Bibliothéque des sciences Anglais Disponible
Disponible