University Sétif 1 FERHAT ABBAS Faculty of Sciences
Détail de l'auteur
Auteur Dame,Imane |
Documents disponibles écrits par cet auteur
Ajouter le résultat dans votre panier Affiner la recherche
Titre : Approch Historiques de l'équation : N=X²+Y² (X²+Y²=Z²) Type de document : texte imprimé Auteurs : Dame,Imane, Auteur ; Nourreddine Daili, Directeur de thèse Editeur : Setif:UFA Année de publication : 2018 Importance : 1 vol (43 f .) Format : 29 cm Langues : Français (fre) Langues originales : Français (fre) Catégories : Thèses & Mémoires:Mathématique Mots-clés : Histoire de la théorie élémentaire des nombres
Décomposition d'entier en sommes de deux carrés
THéoréme de fermat-WILESIndex. décimale : 512.1 Algèbre en relation avec la géométrie Résumé : Das ce mémoire nous avons étudié le théoreme des somme des deux caré de fermat el la possibilité d'écrir chaqe entier sous form de somme des deux carrés p=x²+y² Note de contenu : Sommaire
Introduction 2
1 Généralités 3
1.1 Historique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Pré-Pythagore . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Entre Pythagore et Fermat . . . . . . . . . . . . . . . . . . . 5
1.1.4 Fermat et le Point qui a Renversé le Trophée . . . . . . . . 5
1.1.5 Post-Fermat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Rappels sur les Anneaux . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Rappels sur les Idéaux . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Présentation de Z[i] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 LÂ’anneau Z=nZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Les Corps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.7 Nombres Pairs et Impairs . . . . . . . . . . . . . . . . . . . . . . . . 11
1.8 Equations Algébriques . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.8.1 Equations Algébrique du 1er et seconde Degré . . . . . . . 11
1.8.2 Equations Diophantiennes . . . . . . . . . . . . . . . . . . . . 12
2 L’Equation x2 + y2 = z2 et Généralisations 13
2.1 Triplets Pythagorciens . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1
2.1.1 Triplets primitifs . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Équation de Fermat -Wiles . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.1 Le Grand Théorème de Fermat . . . . . . . . . . . . . . . . . 19
2.2.2 Théoreme de Fermat pour n = 3 . . . . . . . . . . . . . . . . 21
2.2.3 Cas n 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Généralisation de Wiles . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.1 Principe de Wiles . . . . . . . . . . . . . . . . . . . . . . . . . 25
3 Décomposition n = x2 + y2 26
3.1 Théorème des Deux Carrés de Fermat . . . . . . . . . . . . . . . 26
3.1.1 Théoreme des deux carrés de Fermat (cas des nombres
premiers) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.2 Théorème des deux carrés (cas général) . . . . . . . . . . . 31
3.1.3 Théorème des Deux Carrés (compléments) . . . . . . . . . 31
3.2 Propriétés de Somme des deux carrés . . . . . . . . . . . . . . . . . 32
3.3 Epoque de Diophante (Brahmagupa) . . . . . . . . . . . . . . . . . 34
3.4 Le Petit Théorème de Fermat . . . . . . . . . . . . . . . . . . . . . . 35
3.5 Euler et la Descente InÂ…nie . . . . . . . . . . . . . . . . . . . . . . . 36
3.6 Nombre Premier de la Forme x2 + ny2 . . . . . . . . . . . . . . . . 40
Conclusion 42
Bibliographie 42Côte titre : MAM/0256 En ligne : https://drive.google.com/file/d/1R7Mh60MvjseATTmu4L2S6kzWzbUCkc62/view?usp=shari [...] Format de la ressource électronique : Approch Historiques de l'équation : N=X²+Y² (X²+Y²=Z²) [texte imprimé] / Dame,Imane, Auteur ; Nourreddine Daili, Directeur de thèse . - [S.l.] : Setif:UFA, 2018 . - 1 vol (43 f .) ; 29 cm.
Langues : Français (fre) Langues originales : Français (fre)
Catégories : Thèses & Mémoires:Mathématique Mots-clés : Histoire de la théorie élémentaire des nombres
Décomposition d'entier en sommes de deux carrés
THéoréme de fermat-WILESIndex. décimale : 512.1 Algèbre en relation avec la géométrie Résumé : Das ce mémoire nous avons étudié le théoreme des somme des deux caré de fermat el la possibilité d'écrir chaqe entier sous form de somme des deux carrés p=x²+y² Note de contenu : Sommaire
Introduction 2
1 Généralités 3
1.1 Historique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Pré-Pythagore . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Entre Pythagore et Fermat . . . . . . . . . . . . . . . . . . . 5
1.1.4 Fermat et le Point qui a Renversé le Trophée . . . . . . . . 5
1.1.5 Post-Fermat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Rappels sur les Anneaux . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Rappels sur les Idéaux . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Présentation de Z[i] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 LÂ’anneau Z=nZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Les Corps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.7 Nombres Pairs et Impairs . . . . . . . . . . . . . . . . . . . . . . . . 11
1.8 Equations Algébriques . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.8.1 Equations Algébrique du 1er et seconde Degré . . . . . . . 11
1.8.2 Equations Diophantiennes . . . . . . . . . . . . . . . . . . . . 12
2 L’Equation x2 + y2 = z2 et Généralisations 13
2.1 Triplets Pythagorciens . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1
2.1.1 Triplets primitifs . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Équation de Fermat -Wiles . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.1 Le Grand Théorème de Fermat . . . . . . . . . . . . . . . . . 19
2.2.2 Théoreme de Fermat pour n = 3 . . . . . . . . . . . . . . . . 21
2.2.3 Cas n 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Généralisation de Wiles . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.1 Principe de Wiles . . . . . . . . . . . . . . . . . . . . . . . . . 25
3 Décomposition n = x2 + y2 26
3.1 Théorème des Deux Carrés de Fermat . . . . . . . . . . . . . . . 26
3.1.1 Théoreme des deux carrés de Fermat (cas des nombres
premiers) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.2 Théorème des deux carrés (cas général) . . . . . . . . . . . 31
3.1.3 Théorème des Deux Carrés (compléments) . . . . . . . . . 31
3.2 Propriétés de Somme des deux carrés . . . . . . . . . . . . . . . . . 32
3.3 Epoque de Diophante (Brahmagupa) . . . . . . . . . . . . . . . . . 34
3.4 Le Petit Théorème de Fermat . . . . . . . . . . . . . . . . . . . . . . 35
3.5 Euler et la Descente InÂ…nie . . . . . . . . . . . . . . . . . . . . . . . 36
3.6 Nombre Premier de la Forme x2 + ny2 . . . . . . . . . . . . . . . . 40
Conclusion 42
Bibliographie 42Côte titre : MAM/0256 En ligne : https://drive.google.com/file/d/1R7Mh60MvjseATTmu4L2S6kzWzbUCkc62/view?usp=shari [...] Format de la ressource électronique : Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité MAM/0256 MAM/0256 Mémoire Bibliothéque des sciences Français Disponible
Disponible