University Sétif 1 FERHAT ABBAS Faculty of Sciences
Détail de l'auteur
Auteur Christian BLUM |
Documents disponibles écrits par cet auteur



Titre : Design of a learning methode for automatic data extraction Type de document : texte imprimé Auteurs : Bouamama, Salim, Acteur ; Abdellah BOUKERRAM, Directeur de thèse ; Christian BLUM Editeur : Setif:UFA Année de publication : 2013 Importance : 1 vol (128 f .) Format : 29 cm Catégories : Informatique Mots-clés : Données de grande dimension
Regroupement spectral
Apprentissage en utilisant lesgraphes
Régularisation sur graphes
Marches aléatoires sur graphes
Diffusion maps
Analyse vidéo du comportement humain
Segmentation hiérarchique des flux vidéo
Moments de Zernike spatio-temporels
Points SIFTIndex. décimale : 004 Informatique Résumé : Optimization is a scientific discipline that is concerned with the extraction of optimalsolutions for a problem, among alternatives. Many challenging applications inbusiness, economics,and engineering can be formulated as optimization problems.However, they are often complexand difficult to solve by an exact method within areasonable amount of time.In this thesis we propose a novel approach called population based iterated greedy algorithm in order to efficiently explore and exploit the search space of one of the NP-hard combinatorial optimizationproblems namely the minimumn weigh vertex cover problem. It isa fundamental graph problem with many important real-life applicationssuchas, for example, in wireless communication, circuit design and network flows.An extensive experimental evaluation on a commonly used set of benchmarkinstances shows that our algorithm outperforms current state-of-the-art methods notonly in solution quality but also in computation time. Côte titre : DI/0010 En ligne : http://dspace.univ-setif.dz:8888/jspui/handle/123456789/35 Design of a learning methode for automatic data extraction [texte imprimé] / Bouamama, Salim, Acteur ; Abdellah BOUKERRAM, Directeur de thèse ; Christian BLUM . - [S.l.] : Setif:UFA, 2013 . - 1 vol (128 f .) ; 29 cm.
Catégories : Informatique Mots-clés : Données de grande dimension
Regroupement spectral
Apprentissage en utilisant lesgraphes
Régularisation sur graphes
Marches aléatoires sur graphes
Diffusion maps
Analyse vidéo du comportement humain
Segmentation hiérarchique des flux vidéo
Moments de Zernike spatio-temporels
Points SIFTIndex. décimale : 004 Informatique Résumé : Optimization is a scientific discipline that is concerned with the extraction of optimalsolutions for a problem, among alternatives. Many challenging applications inbusiness, economics,and engineering can be formulated as optimization problems.However, they are often complexand difficult to solve by an exact method within areasonable amount of time.In this thesis we propose a novel approach called population based iterated greedy algorithm in order to efficiently explore and exploit the search space of one of the NP-hard combinatorial optimizationproblems namely the minimumn weigh vertex cover problem. It isa fundamental graph problem with many important real-life applicationssuchas, for example, in wireless communication, circuit design and network flows.An extensive experimental evaluation on a commonly used set of benchmarkinstances shows that our algorithm outperforms current state-of-the-art methods notonly in solution quality but also in computation time. Côte titre : DI/0010 En ligne : http://dspace.univ-setif.dz:8888/jspui/handle/123456789/35 Exemplaires (2)
Code-barres Cote Support Localisation Section Disponibilité DI/0010 DI/0010-0011 Thèse Bibliothéque des sciences Anglais Disponible
DisponibleDI/0011 DI/0010-0011 Thèse Bibliothéque des sciences Anglais Disponible
Disponible