Titre : |
Maths1 : Analysis and Algebra1 |
Type de document : |
texte imprimé |
Auteurs : |
Aissa Benseghir, Auteur |
Année de publication : |
2022 |
Importance : |
1 vol (95 p.) |
Format : |
29 cm |
Langues : |
Français (fre) |
Catégories : |
Publications pédagogiques:Mathématiaue P/P
|
Mots-clés : |
Analysis Algebra1 Numbers Real functions real variable Linear algebra |
Index. décimale : |
510-Mathématique |
Résumé : |
Preface
This mathematics course goes beyond certain developments within the strict frame-
work of the program usually covered in the first year of the undergraduate cycle of
higher education. We wanted to make it a reference document that engineering stu-
dents can use in the rest of their studies to deepen or review the notions of algebra or
analysis used in the teaching of applied mathematics for the master’s degree.
In this work, we have endeavored to give precise definitions and present rigorous rea-
soning without, however, seeking exhaustiveness. Furthermore, as far as possible, we
have sought to motivate the concepts introduced and to illustrate them with examples,
remarks and warnings in order to make learning more dynamic.
This manuscript constitutes the essential part of Analysis 1 and Algebra 1 which
I gave first year LMD science of matter. We will enhance the course with applications
and motivations from physics and chemistry.
It covers the essential elements of set theory, applications and relationships, internal
laws, an introduction to general algebra such as groups, rings, fields. It then addresses
the real functions of a real variable, in particular the notion of limit, its properties, the
notion of continuity and differentiability of functions and finally we study the usual
functions, these functions appear naturally in solving simple problems, especially those
dealing with real-world topics in physics. It also covers an introduction of vector spaces
given in the last chapter. We then formalize the abstract and fundamental concept in
linear algebra as well as that of linear |
Note de contenu : |
Contents
Preface i
1 General algebra 2
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Definitions of sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Equivalence relation and
Order relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5 Internal composition laws . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.6 Group, Subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.7 Rings, Sub-ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.8 Body, Subbody . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.9 Solved exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.9.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.9.2 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2 Numbers 24
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 Rational numbers and irrational numbers . . . . . . . . . . . . . . . . . 25
2.2.1 Decimal representation of rational and irrational numbers . . . . 25
2.2.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3 Real numbers and thier properties . . . . . . . . . . . . . . . . . . . . . 27
2.3.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.2 Solving inequalities . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4 Least upper bounds and
greatest lower bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.1 Upper and lower bounds . . . . . . . . . . . . . . . . . . . . . . 32
2.4.2 Least upper bounds, greatest lower bounds . . . . . . . . . . . . 33
2.5 Reasoning by recurrence. . . . . . . . . . . . . . . . . . . . . 35
2.6 Solved exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.6.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.6.2 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3 Real functions with a real variable 40
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Notions of function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.2 Function operations . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Limit of a function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4 Continuity of a function . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.1 Continuity at a point . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.2 Continuity over an interval . . . . . . . . . . . . . . . . . . . . . 50
3.4.3 Uniform continuity . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5 Differentiation of a functions . . . . . . . . . . . . . . . . . . . . . . . . 53
3.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.5.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.6 Convex functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.6.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.6.2 Graph of convex function . . . . . . . . . . . . . . . . . . . . . . 58
3.7 Derivative of usual functions . . . . . . . . . . . . . . . . . . . . . . . . 59
3.8 Solved exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.8.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.8.2 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4 Some elementary functions 67
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 Reciprocal circular functions . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2.1 Brief reminders of trigonometric functions . . . . . . . . . . . . 68
4.2.2 Arcsine function . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2.3 Arccosine function . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2.4 Arctangent function . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3 Hyperbolic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.1 Definitions and first properties . . . . . . . . . . . . . . . . . . . 72
4.3.2 Addition formulas for hyperbolic functions . . . . . . . . . . . . 75
4.3.3 Inverse hyperbolic functions . . . . . . . . . . . . . . . . . . . . 75
4.4 Solved exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.4.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.4.2 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5 Linear algebra 84
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2 Vector spaces , vector subspaces . . . . . . . . . . . . . . . . . . . . . . 84
5.3 Linear application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.4 Solved exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.4.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.4.2 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 |
Côte titre : |
PM/0011 |
En ligne : |
http://dspace.univ-setif.dz:8888/jspui/bitstream/123456789/4911/1/Maths1%20Analy [...] |
Maths1 : Analysis and Algebra1 [texte imprimé] / Aissa Benseghir, Auteur . - 2022 . - 1 vol (95 p.) ; 29 cm. Langues : Français ( fre)
Catégories : |
Publications pédagogiques:Mathématiaue P/P
|
Mots-clés : |
Analysis Algebra1 Numbers Real functions real variable Linear algebra |
Index. décimale : |
510-Mathématique |
Résumé : |
Preface
This mathematics course goes beyond certain developments within the strict frame-
work of the program usually covered in the first year of the undergraduate cycle of
higher education. We wanted to make it a reference document that engineering stu-
dents can use in the rest of their studies to deepen or review the notions of algebra or
analysis used in the teaching of applied mathematics for the master’s degree.
In this work, we have endeavored to give precise definitions and present rigorous rea-
soning without, however, seeking exhaustiveness. Furthermore, as far as possible, we
have sought to motivate the concepts introduced and to illustrate them with examples,
remarks and warnings in order to make learning more dynamic.
This manuscript constitutes the essential part of Analysis 1 and Algebra 1 which
I gave first year LMD science of matter. We will enhance the course with applications
and motivations from physics and chemistry.
It covers the essential elements of set theory, applications and relationships, internal
laws, an introduction to general algebra such as groups, rings, fields. It then addresses
the real functions of a real variable, in particular the notion of limit, its properties, the
notion of continuity and differentiability of functions and finally we study the usual
functions, these functions appear naturally in solving simple problems, especially those
dealing with real-world topics in physics. It also covers an introduction of vector spaces
given in the last chapter. We then formalize the abstract and fundamental concept in
linear algebra as well as that of linear |
Note de contenu : |
Contents
Preface i
1 General algebra 2
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Definitions of sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Equivalence relation and
Order relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5 Internal composition laws . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.6 Group, Subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.7 Rings, Sub-ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.8 Body, Subbody . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.9 Solved exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.9.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.9.2 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2 Numbers 24
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 Rational numbers and irrational numbers . . . . . . . . . . . . . . . . . 25
2.2.1 Decimal representation of rational and irrational numbers . . . . 25
2.2.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3 Real numbers and thier properties . . . . . . . . . . . . . . . . . . . . . 27
2.3.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.2 Solving inequalities . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4 Least upper bounds and
greatest lower bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.1 Upper and lower bounds . . . . . . . . . . . . . . . . . . . . . . 32
2.4.2 Least upper bounds, greatest lower bounds . . . . . . . . . . . . 33
2.5 Reasoning by recurrence. . . . . . . . . . . . . . . . . . . . . 35
2.6 Solved exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.6.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.6.2 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3 Real functions with a real variable 40
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Notions of function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.2 Function operations . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Limit of a function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4 Continuity of a function . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.1 Continuity at a point . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.2 Continuity over an interval . . . . . . . . . . . . . . . . . . . . . 50
3.4.3 Uniform continuity . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5 Differentiation of a functions . . . . . . . . . . . . . . . . . . . . . . . . 53
3.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.5.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.6 Convex functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.6.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.6.2 Graph of convex function . . . . . . . . . . . . . . . . . . . . . . 58
3.7 Derivative of usual functions . . . . . . . . . . . . . . . . . . . . . . . . 59
3.8 Solved exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.8.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.8.2 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4 Some elementary functions 67
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 Reciprocal circular functions . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2.1 Brief reminders of trigonometric functions . . . . . . . . . . . . 68
4.2.2 Arcsine function . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2.3 Arccosine function . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2.4 Arctangent function . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3 Hyperbolic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.1 Definitions and first properties . . . . . . . . . . . . . . . . . . . 72
4.3.2 Addition formulas for hyperbolic functions . . . . . . . . . . . . 75
4.3.3 Inverse hyperbolic functions . . . . . . . . . . . . . . . . . . . . 75
4.4 Solved exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.4.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.4.2 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5 Linear algebra 84
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2 Vector spaces , vector subspaces . . . . . . . . . . . . . . . . . . . . . . 84
5.3 Linear application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.4 Solved exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.4.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.4.2 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 |
Côte titre : |
PM/0011 |
En ligne : |
http://dspace.univ-setif.dz:8888/jspui/bitstream/123456789/4911/1/Maths1%20Analy [...] |
|