University Sétif 1 FERHAT ABBAS Faculty of Sciences
Détail de l'auteur
Auteur Aitou ,Madjda |
Documents disponibles écrits par cet auteur



The three dimensional time dependent generalized Dirac oscillator (Adiabatic solution) / Aitou ,Madjda
![]()
Titre : The three dimensional time dependent generalized Dirac oscillator (Adiabatic solution) Type de document : texte imprimé Auteurs : Aitou ,Madjda, Auteur ; N. Chaabi, Directeur de thèse Editeur : Setif:UFA Année de publication : 2019 Importance : 1 vol (59 f .) Format : 29 cm Langues : Français (fre) Catégories : Thèses & Mémoires:Physique Mots-clés : Mecanique quantiquerelativiste Index. décimale : 530 Physique Résumé : L'oscillateur deDiracestl'undesdeveloppements
les plusimportantsdanssaconstructionetses
applications. C'estunegeneralisationdel'oscillateur
harmonique danslecasrelativiste.
Dans cetravail,nousconsideronsletheoreme
adiabatique pourl'oscillateurdeDiracgeneraliseatrois
dimensions avecparametresdependantdutemps.Nous
determinonslasolutiondel'equationdeSchrodinger
correspondantedanslescadredel'approximation
adiabatique ,dontnouscalculonslaphasegeometrique
correspondante(phasedeBerryNote de contenu :
Sommaire
Introduction 3
1 Chapter1:Relativisticquantummechanics5
1.1 Introduction...................................................5
1.2 Fourvectorformalism.............................................5
1.3 TheKleinGordenequation..........................................6
1.4 TheDiracequation...............................................7
1.4.1 RepresentationoftheDiracmatrices.................................8
1.4.2 ProbabilitydensityfortheDiracequation.............................9
1.4.3 Extremenon-relativisticlimitoftheDiracequation........................9
1.4.4 SpinoftheDiracparticles.......................................10
1.4.5 PlanewavesolutionsoftheDiracequation.............................11
1.5 Anti-particles|Holetheory.........................................14
2 Chapter2:ThetimedependentSchrodingerequation'sresolution16
2.1 Theexactmethods...............................................16
2.1.1 Evolutionoperator...........................................16
2.1.2 Changeofrepresentation.......................................16
2.1.3 Unitarytransformation........................................16
2.1.4 Invarianttheory............................................17
2.2 Approximationmethods............................................19
2.2.1 Perturbationtheory..........................................19
2.2.2 Thevariationalmethods........................................19
2.2.3 Suddenapproximation.........................................19
2.2.4 Adiabaticapproximation.......................................20
3 Chapter3:TheadiabaticapproximationandtheBerryphase22
3.1 Theadiabaticapproximation.........................................22
3.1.1 Theadiabaticapproximationinquantummechanics........................22
3.1.2 Theadiabatictheoreminthecaseofthediscretespectrum....................22
3.1.3 Thestatementoftheadiabatictheorem...............................23
3.2 TheBerryphase................................................24
3.2.1 Introduction..............................................24
3.2.2 SimplisticdenitionoftheBerryphase...............................25
3.2.3 GeneralformalismoftheBerryphase................................25
3.2.4 PhysicalinterpretationoftheBerryphase..............................26
3.2.5 Example:Berryphaseforanelectroninaslowlyvaryingmagneticeld.............28
3.3 TheBerryphaseapplications.........................................28
3.4 Berryphaseincondensedmatter:(Selectedexamples)...........................28
3.4.1 Berryphaseinblochbands......................................28
3.4.2 Thequantumhalleect(QHE)....................................30
4 Chapter4:Thethreedimensionalharmonicoscillator32
4.1 Introduction..................................................32
4.2 Threedimensionsharmonicoscillator....................................32
4.2.1 Operationaltreatmentofthreedimensionsquantumharmonicoscillator............32
4.2.2 Wavefunctionofthreedimensionsquantumharmonicoscillator..................34
4.2.3 Remarksontheoscillator.......................................34
5 Chapter5:ThethreedimensionaltimedependentgeneralizedDiracoscillator(Adiabatic
solution) 36
5.1 Introduction..................................................36
5.2 ThethreedimensionaltimedependentgeneralizedDiracoscillator....................36
5.2.1 Introducetheproblem........................................36
5.2.2 Decouplingofspinors.........................................36
5.2.3 Thetotalkineticmomentum.....................................38
5.2.4 Separationofvariables.........................................38
5.2.5 Unitarytransformation........................................39
5.2.6 Solutionoftheequations.......................................39
Page1
TABLEOFCONTENTS
5.2.7 Timedependentsolution.......................................42
5.2.8 Calculationof Ijl and Njl . ......................................44
5.2.9 TheexplicitformfortheBerryphase................................45
Conclusion 46
Bibliographic references 47
Page2Côte titre : MAPH/0334 En ligne : https://drive.google.com/file/d/1KI7CL_R31ReYwKcoBOGHXQq_Hm7xRil7/view?usp=shari [...] Format de la ressource électronique : The three dimensional time dependent generalized Dirac oscillator (Adiabatic solution) [texte imprimé] / Aitou ,Madjda, Auteur ; N. Chaabi, Directeur de thèse . - [S.l.] : Setif:UFA, 2019 . - 1 vol (59 f .) ; 29 cm.
Langues : Français (fre)
Catégories : Thèses & Mémoires:Physique Mots-clés : Mecanique quantiquerelativiste Index. décimale : 530 Physique Résumé : L'oscillateur deDiracestl'undesdeveloppements
les plusimportantsdanssaconstructionetses
applications. C'estunegeneralisationdel'oscillateur
harmonique danslecasrelativiste.
Dans cetravail,nousconsideronsletheoreme
adiabatique pourl'oscillateurdeDiracgeneraliseatrois
dimensions avecparametresdependantdutemps.Nous
determinonslasolutiondel'equationdeSchrodinger
correspondantedanslescadredel'approximation
adiabatique ,dontnouscalculonslaphasegeometrique
correspondante(phasedeBerryNote de contenu :
Sommaire
Introduction 3
1 Chapter1:Relativisticquantummechanics5
1.1 Introduction...................................................5
1.2 Fourvectorformalism.............................................5
1.3 TheKleinGordenequation..........................................6
1.4 TheDiracequation...............................................7
1.4.1 RepresentationoftheDiracmatrices.................................8
1.4.2 ProbabilitydensityfortheDiracequation.............................9
1.4.3 Extremenon-relativisticlimitoftheDiracequation........................9
1.4.4 SpinoftheDiracparticles.......................................10
1.4.5 PlanewavesolutionsoftheDiracequation.............................11
1.5 Anti-particles|Holetheory.........................................14
2 Chapter2:ThetimedependentSchrodingerequation'sresolution16
2.1 Theexactmethods...............................................16
2.1.1 Evolutionoperator...........................................16
2.1.2 Changeofrepresentation.......................................16
2.1.3 Unitarytransformation........................................16
2.1.4 Invarianttheory............................................17
2.2 Approximationmethods............................................19
2.2.1 Perturbationtheory..........................................19
2.2.2 Thevariationalmethods........................................19
2.2.3 Suddenapproximation.........................................19
2.2.4 Adiabaticapproximation.......................................20
3 Chapter3:TheadiabaticapproximationandtheBerryphase22
3.1 Theadiabaticapproximation.........................................22
3.1.1 Theadiabaticapproximationinquantummechanics........................22
3.1.2 Theadiabatictheoreminthecaseofthediscretespectrum....................22
3.1.3 Thestatementoftheadiabatictheorem...............................23
3.2 TheBerryphase................................................24
3.2.1 Introduction..............................................24
3.2.2 SimplisticdenitionoftheBerryphase...............................25
3.2.3 GeneralformalismoftheBerryphase................................25
3.2.4 PhysicalinterpretationoftheBerryphase..............................26
3.2.5 Example:Berryphaseforanelectroninaslowlyvaryingmagneticeld.............28
3.3 TheBerryphaseapplications.........................................28
3.4 Berryphaseincondensedmatter:(Selectedexamples)...........................28
3.4.1 Berryphaseinblochbands......................................28
3.4.2 Thequantumhalleect(QHE)....................................30
4 Chapter4:Thethreedimensionalharmonicoscillator32
4.1 Introduction..................................................32
4.2 Threedimensionsharmonicoscillator....................................32
4.2.1 Operationaltreatmentofthreedimensionsquantumharmonicoscillator............32
4.2.2 Wavefunctionofthreedimensionsquantumharmonicoscillator..................34
4.2.3 Remarksontheoscillator.......................................34
5 Chapter5:ThethreedimensionaltimedependentgeneralizedDiracoscillator(Adiabatic
solution) 36
5.1 Introduction..................................................36
5.2 ThethreedimensionaltimedependentgeneralizedDiracoscillator....................36
5.2.1 Introducetheproblem........................................36
5.2.2 Decouplingofspinors.........................................36
5.2.3 Thetotalkineticmomentum.....................................38
5.2.4 Separationofvariables.........................................38
5.2.5 Unitarytransformation........................................39
5.2.6 Solutionoftheequations.......................................39
Page1
TABLEOFCONTENTS
5.2.7 Timedependentsolution.......................................42
5.2.8 Calculationof Ijl and Njl . ......................................44
5.2.9 TheexplicitformfortheBerryphase................................45
Conclusion 46
Bibliographic references 47
Page2Côte titre : MAPH/0334 En ligne : https://drive.google.com/file/d/1KI7CL_R31ReYwKcoBOGHXQq_Hm7xRil7/view?usp=shari [...] Format de la ressource électronique : Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité MAPH/0334 MAPH/0334 Mémoire Bibliothéque des sciences Français Disponible
Disponible