University Sétif 1 FERHAT ABBAS Faculty of Sciences
Détail de l'auteur
Auteur Gueliani,Slimane Nadjmeddine |
Documents disponibles écrits par cet auteur



Titre : Food Hazard Event Extraction based on News and Social Media Type de document : texte imprimé Auteurs : Gueliani,Slimane Nadjmeddine, Auteur ; Harrag,Fouzi, Directeur de thèse Editeur : Setif:UFA Année de publication : 2019 Importance : 1 vol (74 f .) Format : 29 cm Langues : Français (fre) Catégories : Thèses & Mémoires:Informatique Mots-clés : Social media
Event Extraction
Food Hazards
Named Entity
Recurrent Neural
NetworksIndex. décimale : 004 - Informatique Résumé : Exchanging textual data is the most popular communication among social media users. It has become a
necessity for treatment. Event extraction indicates an understanding of events across social media posts
streams. Event extraction helps to take faster corrective action in natural disasters, and may save lives.
The main objective of the system is to develop specific model to detect and extract the events (incidents)
identified in the digital text. We proposed here a model based on Deep recurrent networks a to extract the
events related to food hazard from news and social media feeds, and detect named entities for those food
hazards. Then filled a food hazard template.
Later, the output data which is the food hazard template could be displayed as a warning system, or used
as decision support for stakeholders.Note de contenu : Sommaire
pter 1 ........................................................................................................................................................1
Introduction ....................................................................................................................................................1
Problematic and motivation.........................................................................................................................1
Project goals ...............................................................................................................................................2
Thesis structure............................................................................................................................................2
Chapter 2 State of the art................................................................................................................................3
State of the art ................................................................................................................................................3
Food hazards................................................................................................................................................3
Physical hazards ...........................................................................................................................................4
chemical hazards .........................................................................................................................................4
biological hazards...........................................................................................................................................4
HACCP...........................................................................................................................................................5
Social media ...................................................................................................................................................8
Data mining ....................................................................................................................................................9
Deep learning ...............................................................................................................................................15
Neural networks ...........................................................................................................................................16
Convolutional Neural Network ....................................................................................................................17
Recurrent Neural Network ...........................................................................................................................18
Text mining ..................................................................................................................................................21
Natural Language Processing ......................................................................................................................21
Information Retrieval ...................................................................................................................................21
Information Extraction .................................................................................................................................22
Named entity recognition .............................................................................................................................25
Related Works ..............................................................................................................................................30
Conclusion....................................................................................................................................................37
Chapter 3 Proposed System..........................................................................................................................38
System description .......................................................................................................................................38
System architecture ......................................................................................................................................38
System components......................................................................................................................................45
Evaluations metrics ......................................................................................................................................46
Languages and tools .....................................................................................................................................47
Conclusion....................................................................................................................................................49
Chapter 4 Implementation and Results.........................................................................................................50
Data collection process.................................................................................................................................50
Text analysis process....................................................................................................................................52
Information extraction process.....................................................................................................................56
Named entity recognition .............................................................................................................................56
Preparing input for the model.......................................................................................................................59
Preparing output for model...........................................................................................................................62
Turning data into sequences .........................................................................................................................63
Prepare the test data for scoring ...................................................................................................................63
Create the model...........................................................................................................................................63
Train the model ............................................................................................................................................64
Results and experiments...............................................................................................................................65
General Conclusion and perspectives...........................................................................................................73
Bibliography ................................................................................................................................................73
Côte titre : MAI/0323 En ligne : https://drive.google.com/file/d/1TLYW830cezsU-EYJiKnsjIFFzZCdQxst/view?usp=shari [...] Format de la ressource électronique : Food Hazard Event Extraction based on News and Social Media [texte imprimé] / Gueliani,Slimane Nadjmeddine, Auteur ; Harrag,Fouzi, Directeur de thèse . - [S.l.] : Setif:UFA, 2019 . - 1 vol (74 f .) ; 29 cm.
Langues : Français (fre)
Catégories : Thèses & Mémoires:Informatique Mots-clés : Social media
Event Extraction
Food Hazards
Named Entity
Recurrent Neural
NetworksIndex. décimale : 004 - Informatique Résumé : Exchanging textual data is the most popular communication among social media users. It has become a
necessity for treatment. Event extraction indicates an understanding of events across social media posts
streams. Event extraction helps to take faster corrective action in natural disasters, and may save lives.
The main objective of the system is to develop specific model to detect and extract the events (incidents)
identified in the digital text. We proposed here a model based on Deep recurrent networks a to extract the
events related to food hazard from news and social media feeds, and detect named entities for those food
hazards. Then filled a food hazard template.
Later, the output data which is the food hazard template could be displayed as a warning system, or used
as decision support for stakeholders.Note de contenu : Sommaire
pter 1 ........................................................................................................................................................1
Introduction ....................................................................................................................................................1
Problematic and motivation.........................................................................................................................1
Project goals ...............................................................................................................................................2
Thesis structure............................................................................................................................................2
Chapter 2 State of the art................................................................................................................................3
State of the art ................................................................................................................................................3
Food hazards................................................................................................................................................3
Physical hazards ...........................................................................................................................................4
chemical hazards .........................................................................................................................................4
biological hazards...........................................................................................................................................4
HACCP...........................................................................................................................................................5
Social media ...................................................................................................................................................8
Data mining ....................................................................................................................................................9
Deep learning ...............................................................................................................................................15
Neural networks ...........................................................................................................................................16
Convolutional Neural Network ....................................................................................................................17
Recurrent Neural Network ...........................................................................................................................18
Text mining ..................................................................................................................................................21
Natural Language Processing ......................................................................................................................21
Information Retrieval ...................................................................................................................................21
Information Extraction .................................................................................................................................22
Named entity recognition .............................................................................................................................25
Related Works ..............................................................................................................................................30
Conclusion....................................................................................................................................................37
Chapter 3 Proposed System..........................................................................................................................38
System description .......................................................................................................................................38
System architecture ......................................................................................................................................38
System components......................................................................................................................................45
Evaluations metrics ......................................................................................................................................46
Languages and tools .....................................................................................................................................47
Conclusion....................................................................................................................................................49
Chapter 4 Implementation and Results.........................................................................................................50
Data collection process.................................................................................................................................50
Text analysis process....................................................................................................................................52
Information extraction process.....................................................................................................................56
Named entity recognition .............................................................................................................................56
Preparing input for the model.......................................................................................................................59
Preparing output for model...........................................................................................................................62
Turning data into sequences .........................................................................................................................63
Prepare the test data for scoring ...................................................................................................................63
Create the model...........................................................................................................................................63
Train the model ............................................................................................................................................64
Results and experiments...............................................................................................................................65
General Conclusion and perspectives...........................................................................................................73
Bibliography ................................................................................................................................................73
Côte titre : MAI/0323 En ligne : https://drive.google.com/file/d/1TLYW830cezsU-EYJiKnsjIFFzZCdQxst/view?usp=shari [...] Format de la ressource électronique : Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité MAI/0323 MAI/0323 Mémoire Bibliothéque des sciences Français Disponible
Disponible