University Sétif 1 FERHAT ABBAS Faculty of Sciences
Détail de l'auteur
Auteur Ian Goodfellow |
Documents disponibles écrits par cet auteur



Titre : Deep learning Type de document : texte imprimé Auteurs : Ian Goodfellow, Auteur ; Yoshua Bengio, Auteur ; Aaron Courville, Auteur Editeur : Cambridge (Mass.) : the MIT Press Année de publication : copyright 2016 Collection : Adaptative computation and machine learning series Importance : 1 vol. (775 p.) Présentation : ill. en noir et en coul., couv. ill. en coul. Format : 24 cm ISBN/ISSN/EAN : 978-0-262-03561-3 Note générale : 978-0-262-03561-3 Langues : Anglais (eng) Catégories : Informatique Mots-clés : Apprentissage automatique
Apprentissage profond
Modèles mathématiques
Intelligence artificielle
Analyse multivariéeIndex. décimale : 006.3 Intelligence artificielle Résumé :
La 4e de couverture indique : "Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones ; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning."Note de contenu :
Sommaire
I. Applied math and machine learning basics
2. Linear algebra
3. Probability and information theory
4. Numerical computation
5. Machine learning basics
II. Deep networks : modern practices
6. Deep feedforward networks
7. Regularization for deep learning
8. Optimization for training deep models
9. Convolutional networks
10. Sequence modeling : recurrent and recursive nets
11. Practical methodology
12. Applications
III. Deep learning research
13. Linear factor models
14. Autoencoders
15. Representation learning
16. Structured probabilistic models for deep learning
17. Monte Carlo methods
18. Confronting the partition function
19. Approximate inference
20. Deep generative modelsCôte titre : Fs/23308-23309 Deep learning [texte imprimé] / Ian Goodfellow, Auteur ; Yoshua Bengio, Auteur ; Aaron Courville, Auteur . - Cambridge (Mass.) : the MIT Press, copyright 2016 . - 1 vol. (775 p.) : ill. en noir et en coul., couv. ill. en coul. ; 24 cm. - (Adaptative computation and machine learning series) .
ISBN : 978-0-262-03561-3
978-0-262-03561-3
Langues : Anglais (eng)
Catégories : Informatique Mots-clés : Apprentissage automatique
Apprentissage profond
Modèles mathématiques
Intelligence artificielle
Analyse multivariéeIndex. décimale : 006.3 Intelligence artificielle Résumé :
La 4e de couverture indique : "Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones ; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning."Note de contenu :
Sommaire
I. Applied math and machine learning basics
2. Linear algebra
3. Probability and information theory
4. Numerical computation
5. Machine learning basics
II. Deep networks : modern practices
6. Deep feedforward networks
7. Regularization for deep learning
8. Optimization for training deep models
9. Convolutional networks
10. Sequence modeling : recurrent and recursive nets
11. Practical methodology
12. Applications
III. Deep learning research
13. Linear factor models
14. Autoencoders
15. Representation learning
16. Structured probabilistic models for deep learning
17. Monte Carlo methods
18. Confronting the partition function
19. Approximate inference
20. Deep generative modelsCôte titre : Fs/23308-23309 Exemplaires (2)
Code-barres Cote Support Localisation Section Disponibilité Fs/23308 Fs/23308-23309 livre Bibliothéque des sciences Français Disponible
Sorti jusqu'au 09/01/2024Fs/23309 Fs/23308-23309 livre Bibliothéque des sciences Français Disponible
Sorti jusqu'au 15/11/2023