|
| Titre : |
Nonlinear Optical Properties of Organometallic Complexes: Contributions from Quantum Chemistry. |
| Type de document : |
document électronique |
| Auteurs : |
Meriem Zaidi, Auteur ; D. Hannachi, Directeur de thèse |
| Editeur : |
Sétif:UFA1 |
| Année de publication : |
2025 |
| Importance : |
1 vol (195 f.) |
| Format : |
29 cm |
| Langues : |
Anglais (eng) |
| Catégories : |
Thèses & Mémoires:Chimie
|
| Mots-clés : |
Nonlinear Optical |
| Index. décimale : |
204- chimie |
| Résumé : |
This thesis presents a detailed theoretical investigation of the second- and third-order nonlinear optical (NLO) properties of two classes of materials: transition metal-doped nanocages (M@Al₁₂N₁₂, M = Sc to Zn) and multi-decker organometallic sandwich clusters [{H₂B₂S₂Pd(Cl)₂}–(CoCp)ₙ] (n = 2–5). Using DFT, TD-DFT, and the Sum-Over-States (SOS) approach at various frequencies ( = 0.0428, 0.034, 0.0239 a.u.), we explored both static and dynamic NLO responses. Key parameters including oscillator strengths, excitation energies, and charge-transfer features were analyzed. In nanocages, strong NLO responses were linked to charge delocalization and closed ring topologies. The sandwich complexes MDSn, MDSna, and MDS’n showed structure-dependent polarizability and hyperpolarizability trends, with MDSn exhibiting a consistent increase in β and MDS’n peaking at n = 4. Both systems demonstrated significant frequency-dependent enhancement, particularly under two-photon resonance. Furthermore, MDSn/ MDS’n complexes show colossal γ responses that grow with deck number, peaking in MDS₅. Molecular length and topology govern these effects. These results offer important guidance for the rational design of high-performance NLO materials aimed at next-generation photonic and optoelectronic technologies. |
| Note de contenu : |
Sommaire
Chapter I
I.1 Introduction ......................................................................................................................... 8
I.2 Schrödinger equation ................................................................................................ 8
I.3 Born Oppenheimer Approximation ............................................................................... 9
I.4 Hartree Approximation ........................................................................................... 10
I.5 Hartree-Fock Approximation .................................................................................. 11
I.6 Post Hartree-Fock ................................................................................................... 12
I.7 Density Functional Theory (DFT) .......................................................................... 13
I.7.1 Framework of Density Function Theory (DFT) ...................................... 14
I.7.2 The electronic density ............................................................................. 14
I.8 Hohenberg-Kohn theorem ...................................................................................... 15
I.8.1 Theorem 1................................................................................................ 15
I.8.2 Theorem 2................................................................................................ 16
I.9 Kohn-Sham theorem ............................................................................................... 16
I.10 Exchange-Correlation Approximations in DFT.................................................... 17
I.10.1 Local Density Approximation (LDA) ................................................... 17
I.10.2 Local Spin Density Approximation (LSDA)......................................... 19
I.10.3 Generalized Gradient Approximation (GGA) ....................................... 19
I.10.4 Meta GGA ............................................................................................. 20
I.10.5 The hybrid functional ............................................................................ 21
I.10.6 Range-Separated Hybrid Functionals .................................................... 22
I.10.7 Meta-hybrid functionals ........................................................................ 22
I.10.8 Dispersion Correction .......................................................................... 23
I.10.8.1 Grimm’s DFT-D3 ................................................................... 23
I.11 Conclusion ............................................................................................................ 25
References .................................................................................................................... 26
Chapter II
II.1 Introduction .......................................................................................................... 30
II.2 Development History of Nonlinear Optics .......................................................... 30
II.3 Polarizations and Susceptibilities ......................................................................... 31
II.3.1 Induced Polarization by an Electromagnetic Field: Linear Approximation .... 31
II.3.2 Microscopic and Macroscopic Nonlinearities ........................................ 33
II.4 Application of Nonlinear Optics .......................................................................... 34
II.4.1 Application in Laser Technology .......................................................... 35
II.4.2 Application in Information Technology ............................................... 36
II.4.3 Application in Material Technology ..................................................... 36
II.5 Nonlinear Optical Processes Classification .......................................................... 38
II.6 Computational Discovery of NLO Materials ....................................................... 38
II.6.1 NLO parameters ..................................................................................... 38
II.6.1.1 First hyperpolarizability .......................................................... 38
II.6.1.2 Depolarization Ratio in Nonlinear .......................................... 39
II.6.1.3 Second hyperpolarizability ...................................................... 40
II.7 Electronic transitions ............................................................................................ 41
II.7.1 Charge Transfer Descriptors ................................................................. 41
II.8 Quantum Theory of Atoms in Molecules (QTAIM) ........................................... 43
II.8.1 Characterization of Bonding Interactions ........................................ 43
II.8.1.1 Closed-Shell Interactions ....................................................... 43
II.8.1.2 Open-Shell Interactions .......................................................... 44
II.8.1.3 Intermediate Interactions ........................................................ 44
II.8.2 Bond Classification Through Topological and Energetic Parameters ... 44
II.9 Conclusion ............................................................................................................ 45
References .................................................................................................................... 46
Chapter III
III.1 Introduction ......................................................................................................... 50
III.2 Nanomaterial ...................................................................................................... 50
III.2.1 Classification of Nanomaterials ........................................................... 51
III.2.2 Nanocages: Structure and Significance ............................................... 51
III.3 Al12N12 Nanocages ............................................................................................. 52
III.4 Transition Metals ................................................................................................ 52
III.4.1 3d Elements ......................................................................................... 52
III.5 Overview of Doping Strategies in Nanocage Systems ....................................... 53
III.5.1 Al12N12 Nanoparticles Doped with First-Row Transition Metals (Sc–Zn) ... 54
III.6 Computational method ....................................................................................... 55
III.7 Results and discussion ........................................................................................ 55
III.7.1 Quantum Theory Atoms in Molecules analysis .................................. 55
III.7.2 Electronic Spectra: UV–Vis Absorption and Excited-State Properties 57
III.7.3 Nonlinear Optical Parameters .............................................................. 60
III.7.4 Frequency dispersion effects ............................................................... 67
......... |
| Côte titre : |
Dch/0040 |
Nonlinear Optical Properties of Organometallic Complexes: Contributions from Quantum Chemistry. [document électronique] / Meriem Zaidi, Auteur ; D. Hannachi, Directeur de thèse . - [S.l.] : Sétif:UFA1, 2025 . - 1 vol (195 f.) ; 29 cm. Langues : Anglais ( eng)
| Catégories : |
Thèses & Mémoires:Chimie
|
| Mots-clés : |
Nonlinear Optical |
| Index. décimale : |
204- chimie |
| Résumé : |
This thesis presents a detailed theoretical investigation of the second- and third-order nonlinear optical (NLO) properties of two classes of materials: transition metal-doped nanocages (M@Al₁₂N₁₂, M = Sc to Zn) and multi-decker organometallic sandwich clusters [{H₂B₂S₂Pd(Cl)₂}–(CoCp)ₙ] (n = 2–5). Using DFT, TD-DFT, and the Sum-Over-States (SOS) approach at various frequencies ( = 0.0428, 0.034, 0.0239 a.u.), we explored both static and dynamic NLO responses. Key parameters including oscillator strengths, excitation energies, and charge-transfer features were analyzed. In nanocages, strong NLO responses were linked to charge delocalization and closed ring topologies. The sandwich complexes MDSn, MDSna, and MDS’n showed structure-dependent polarizability and hyperpolarizability trends, with MDSn exhibiting a consistent increase in β and MDS’n peaking at n = 4. Both systems demonstrated significant frequency-dependent enhancement, particularly under two-photon resonance. Furthermore, MDSn/ MDS’n complexes show colossal γ responses that grow with deck number, peaking in MDS₅. Molecular length and topology govern these effects. These results offer important guidance for the rational design of high-performance NLO materials aimed at next-generation photonic and optoelectronic technologies. |
| Note de contenu : |
Sommaire
Chapter I
I.1 Introduction ......................................................................................................................... 8
I.2 Schrödinger equation ................................................................................................ 8
I.3 Born Oppenheimer Approximation ............................................................................... 9
I.4 Hartree Approximation ........................................................................................... 10
I.5 Hartree-Fock Approximation .................................................................................. 11
I.6 Post Hartree-Fock ................................................................................................... 12
I.7 Density Functional Theory (DFT) .......................................................................... 13
I.7.1 Framework of Density Function Theory (DFT) ...................................... 14
I.7.2 The electronic density ............................................................................. 14
I.8 Hohenberg-Kohn theorem ...................................................................................... 15
I.8.1 Theorem 1................................................................................................ 15
I.8.2 Theorem 2................................................................................................ 16
I.9 Kohn-Sham theorem ............................................................................................... 16
I.10 Exchange-Correlation Approximations in DFT.................................................... 17
I.10.1 Local Density Approximation (LDA) ................................................... 17
I.10.2 Local Spin Density Approximation (LSDA)......................................... 19
I.10.3 Generalized Gradient Approximation (GGA) ....................................... 19
I.10.4 Meta GGA ............................................................................................. 20
I.10.5 The hybrid functional ............................................................................ 21
I.10.6 Range-Separated Hybrid Functionals .................................................... 22
I.10.7 Meta-hybrid functionals ........................................................................ 22
I.10.8 Dispersion Correction .......................................................................... 23
I.10.8.1 Grimm’s DFT-D3 ................................................................... 23
I.11 Conclusion ............................................................................................................ 25
References .................................................................................................................... 26
Chapter II
II.1 Introduction .......................................................................................................... 30
II.2 Development History of Nonlinear Optics .......................................................... 30
II.3 Polarizations and Susceptibilities ......................................................................... 31
II.3.1 Induced Polarization by an Electromagnetic Field: Linear Approximation .... 31
II.3.2 Microscopic and Macroscopic Nonlinearities ........................................ 33
II.4 Application of Nonlinear Optics .......................................................................... 34
II.4.1 Application in Laser Technology .......................................................... 35
II.4.2 Application in Information Technology ............................................... 36
II.4.3 Application in Material Technology ..................................................... 36
II.5 Nonlinear Optical Processes Classification .......................................................... 38
II.6 Computational Discovery of NLO Materials ....................................................... 38
II.6.1 NLO parameters ..................................................................................... 38
II.6.1.1 First hyperpolarizability .......................................................... 38
II.6.1.2 Depolarization Ratio in Nonlinear .......................................... 39
II.6.1.3 Second hyperpolarizability ...................................................... 40
II.7 Electronic transitions ............................................................................................ 41
II.7.1 Charge Transfer Descriptors ................................................................. 41
II.8 Quantum Theory of Atoms in Molecules (QTAIM) ........................................... 43
II.8.1 Characterization of Bonding Interactions ........................................ 43
II.8.1.1 Closed-Shell Interactions ....................................................... 43
II.8.1.2 Open-Shell Interactions .......................................................... 44
II.8.1.3 Intermediate Interactions ........................................................ 44
II.8.2 Bond Classification Through Topological and Energetic Parameters ... 44
II.9 Conclusion ............................................................................................................ 45
References .................................................................................................................... 46
Chapter III
III.1 Introduction ......................................................................................................... 50
III.2 Nanomaterial ...................................................................................................... 50
III.2.1 Classification of Nanomaterials ........................................................... 51
III.2.2 Nanocages: Structure and Significance ............................................... 51
III.3 Al12N12 Nanocages ............................................................................................. 52
III.4 Transition Metals ................................................................................................ 52
III.4.1 3d Elements ......................................................................................... 52
III.5 Overview of Doping Strategies in Nanocage Systems ....................................... 53
III.5.1 Al12N12 Nanoparticles Doped with First-Row Transition Metals (Sc–Zn) ... 54
III.6 Computational method ....................................................................................... 55
III.7 Results and discussion ........................................................................................ 55
III.7.1 Quantum Theory Atoms in Molecules analysis .................................. 55
III.7.2 Electronic Spectra: UV–Vis Absorption and Excited-State Properties 57
III.7.3 Nonlinear Optical Parameters .............................................................. 60
III.7.4 Frequency dispersion effects ............................................................... 67
......... |
| Côte titre : |
Dch/0040 |
|