|
| Titre : |
Radiobiological assessment of radiotherapy treatment plans |
| Type de document : |
document électronique |
| Auteurs : |
Dahdouh ,Narimane, Auteur ; Z Chaoui, Directeur de thèse |
| Editeur : |
Sétif:UFA1 |
| Année de publication : |
2025 |
| Importance : |
1 vol (127 f.) |
| Format : |
29 cm |
| Langues : |
Anglais (eng) |
| Catégories : |
Thèses & Mémoires:Physique
|
| Mots-clés : |
Radiobiology
Radiotherapy
Fractionation
Treatment plan
Tumor
Tumor control probability
Normal tissue complication probability. |
| Index. décimale : |
530 - Physique |
| Résumé : |
In addition to conducting a dosimetric evaluation of the treatment plans, we performed a radiobiological assessment using the NTCP, TCP, and UTCP indices. This is integrated into our developed program, Radbio-For, which allowed us to compute radiobiological models for various endpoints of the primary dose-limiting organ. This comprehensive approach enabled us to effectively evaluate and predict both early and late effects. In another section of our analysis, we conducted a comparison of our developed program with the RADBIOMOD and BioSuite software.
Our analysis indicated that the NTCP effectively models the differences in dose constraints across the three models: RS, LKB, and LM. The RS model demonstrates a superior capability in characterizing both late and early effects. Furthermore, the TCP values derived from the models: MP, SP, and LM showed promising expectations for local tumor control following treatment planning, exceeding 90%. Current radiobiological assessments provide clear insights into which organs are particularly sensitive and critical during the treatment plan validation process, offering a more precise understanding than dosimetric indices.
The comparison criterion of the calculated dose constraint with TPS to the relevant clinical dose constraint for each OAR in high-grade NPC and prostate cancer was a valuable predictive tool for assessing the reliability of the calculations of expected early and late complications; This important outcome finds its direct application in personalized radiotherapy in preventing long-term toxicities and is a valuable tool for the physicist before the treatment. In addition, Our optimization tool for isotoxic plans was revealed to be powerful in predicting alternate fractionation and reducing the fraction number. |
| Note de contenu : |
Sommaire
Chapter I: Bases of Clinical Radiobiology……………………………………………03
I. Clinical radiobiology ………………………………………………………...03
II. Classical radiobiology………………………………………………………..03
1. 5Rs of radiobiology………………………………………………………….06
III. Modern radiobiology…………………………………………………………07
1. News 5Rs of radiobiology……………………………………………………08
IV. Fractionation……………………………………………………………...…..09
V. The place of radiobiology in radiotherapy (the contribution of radiobiological models and parameters in the evaluation of radiotherapeutic treatment plans)………………………………………………………………………....10
VI. Radiotherapy treatment plans modalities ……….…………………………...11
VII. The LQ formula for cell survival…………………………………………….14
1. Biological effective dose …………………………………………………..…15
VIII. Mathematical modeling……………………………………………………....17
IX. Organ architecture……………………………………………………………17
X. Radioanatomy of the three locations selected in this study ..……………...…18
1. Breast…………………………………………………………………………18
2. Prostate……………………………………………………………………….20
3. Head and neck …………………………………………………………….…21
4. Organs at risk …………………………………………………………….….22
Chapter II: Radiobiological indexes TCP, NTCP, and UTCP modeling ……………24
I. Tools for evaluating radiotherapeutic treatment plans…………………….…24
II. Dose-volume histogram………………………………………………….…..24
III. Definition of the biological indices TCP, NTCP, and UTCP………………..27
IV. Equivalent uniforme dose EUD …………………………………………..…27
V. Tumor control probability (TCP) ………………………………………..…..28
1. TCP Definition………………………………………………………………..28
2. The TCP calculation models…………………………………………………..28
a. The fundamental Poisson TCP model………………………………..…..28
b. The Improved Marsden Model………………………………………..….28
c. EUD-based TCP model……………………………………………..……30
VI. Normal tissue complication probability (NTCP)………………………….…30
1. NTCP Definition…………………………………………………………….30
2. The NTCP calculation models………………………………………...…….30
a. Lyman-Kutcher-Burman NTCP model…………………………...…….30
b. Relative Seriality model or Kallman model……………………….……32
c. EUD-based NTCP model……………………………………………….34
VII. Uncomplicated tumor control probability (UTCP). …………………..……..35
VIII. Calculation programs…………………………………………………….…..35
1. RADBIOMOD…………………………………………………………..…..35
2. BioSuite…………………………………………………………………..….36
3. Eudmodel.………………………………………………………...…….36
4. Rdbio-For……………………………………………………………………37
IX. TCP and NTCP calculation ………………………………………………….37
1. Monoisocentric and dual isocentric techniques comparison…………..…….38
2. Comparison between 5 fields and 7 fields IMRT treatment plans……….….42
Chapter III: Analyzing the reliability of early and late complication predictions …...47
I. Classification of the toxicities ………………………………………….……47
1. RTOG/EORTC ……………………………………………………….……..47
2. LENT/SOMA………………………………………………………………..47
3. CTCAE………………………………………………………………..……..47
II. The endpoints used in the performed calculation ……………………………47
1. Nasopharynx cancer …………………………………………………….…..48
2. Prostate cancer………………………………………...……………………..52
III. TCP and NTCP prediction ………………………………………..…………56
1. TCP prediction ……………………………………………………...………56
1.1. Comparison between radiobiological programs………………..……….57
1.1.1. Nasopharynx PTV……………………………………….………57
1.1.2. Prostate PTV…………………………………………….………58
1.2. The effect of repopulation in TCP prediction…………………...………59
1.2.1. Nasopharynx PTV………………………………………...……..59
1.2.2. Prostate PTV…………………………………………………….61
2. NTCP prediction……………………………………………………….……64
2.1.Comparison between radiobiological programs. ………………………64
3. The significance of dose constraints in predicting early and late radiation induced complications based on NTCP………………………………..……69
IV. TCP and NTCP correlation to dose constraints predictions…………….……78
1. Serial organs architecture. …………………………………………………..79
2. Parallel organs architecture………………………………………………….81
3. Serial-parallel organs architecture………………………………….………..82
Chapter IV: Optimising the prescription dose and fractionation regimens……..……85
I. Predicting NTCP as a function of time………………………………………85
II. UTCP calculation ………………………………………………………...….87
1. Calculation method and results………………………………………..…….87
1.1.Method………………………………………………………….……….87
1.2.Nasopharyngeal results……………………………………….…………88
1.3.Prostate results…………………………………………………..……….92
III. Improvement using UTCP…………...………………………………..……..96
IV. Improvement using Dose fractionation including BED………………...……97
1. Improving the nasopharyngeal treatment plan……………………………….97
2. Improving the prostate treatment plan…………………………………..…..104
Conclusion …………………………………………………………………..……...108
References ………………………………………………………………………….110
Résumé……………………………………………………………………………...123
ملخص ……………………………………………………………………………..….124
Abstract……………………………………………………………………………..125 |
| Côte titre : |
Dph/0325 |
Radiobiological assessment of radiotherapy treatment plans [document électronique] / Dahdouh ,Narimane, Auteur ; Z Chaoui, Directeur de thèse . - [S.l.] : Sétif:UFA1, 2025 . - 1 vol (127 f.) ; 29 cm. Langues : Anglais ( eng)
| Catégories : |
Thèses & Mémoires:Physique
|
| Mots-clés : |
Radiobiology
Radiotherapy
Fractionation
Treatment plan
Tumor
Tumor control probability
Normal tissue complication probability. |
| Index. décimale : |
530 - Physique |
| Résumé : |
In addition to conducting a dosimetric evaluation of the treatment plans, we performed a radiobiological assessment using the NTCP, TCP, and UTCP indices. This is integrated into our developed program, Radbio-For, which allowed us to compute radiobiological models for various endpoints of the primary dose-limiting organ. This comprehensive approach enabled us to effectively evaluate and predict both early and late effects. In another section of our analysis, we conducted a comparison of our developed program with the RADBIOMOD and BioSuite software.
Our analysis indicated that the NTCP effectively models the differences in dose constraints across the three models: RS, LKB, and LM. The RS model demonstrates a superior capability in characterizing both late and early effects. Furthermore, the TCP values derived from the models: MP, SP, and LM showed promising expectations for local tumor control following treatment planning, exceeding 90%. Current radiobiological assessments provide clear insights into which organs are particularly sensitive and critical during the treatment plan validation process, offering a more precise understanding than dosimetric indices.
The comparison criterion of the calculated dose constraint with TPS to the relevant clinical dose constraint for each OAR in high-grade NPC and prostate cancer was a valuable predictive tool for assessing the reliability of the calculations of expected early and late complications; This important outcome finds its direct application in personalized radiotherapy in preventing long-term toxicities and is a valuable tool for the physicist before the treatment. In addition, Our optimization tool for isotoxic plans was revealed to be powerful in predicting alternate fractionation and reducing the fraction number. |
| Note de contenu : |
Sommaire
Chapter I: Bases of Clinical Radiobiology……………………………………………03
I. Clinical radiobiology ………………………………………………………...03
II. Classical radiobiology………………………………………………………..03
1. 5Rs of radiobiology………………………………………………………….06
III. Modern radiobiology…………………………………………………………07
1. News 5Rs of radiobiology……………………………………………………08
IV. Fractionation……………………………………………………………...…..09
V. The place of radiobiology in radiotherapy (the contribution of radiobiological models and parameters in the evaluation of radiotherapeutic treatment plans)………………………………………………………………………....10
VI. Radiotherapy treatment plans modalities ……….…………………………...11
VII. The LQ formula for cell survival…………………………………………….14
1. Biological effective dose …………………………………………………..…15
VIII. Mathematical modeling……………………………………………………....17
IX. Organ architecture……………………………………………………………17
X. Radioanatomy of the three locations selected in this study ..……………...…18
1. Breast…………………………………………………………………………18
2. Prostate……………………………………………………………………….20
3. Head and neck …………………………………………………………….…21
4. Organs at risk …………………………………………………………….….22
Chapter II: Radiobiological indexes TCP, NTCP, and UTCP modeling ……………24
I. Tools for evaluating radiotherapeutic treatment plans…………………….…24
II. Dose-volume histogram………………………………………………….…..24
III. Definition of the biological indices TCP, NTCP, and UTCP………………..27
IV. Equivalent uniforme dose EUD …………………………………………..…27
V. Tumor control probability (TCP) ………………………………………..…..28
1. TCP Definition………………………………………………………………..28
2. The TCP calculation models…………………………………………………..28
a. The fundamental Poisson TCP model………………………………..…..28
b. The Improved Marsden Model………………………………………..….28
c. EUD-based TCP model……………………………………………..……30
VI. Normal tissue complication probability (NTCP)………………………….…30
1. NTCP Definition…………………………………………………………….30
2. The NTCP calculation models………………………………………...…….30
a. Lyman-Kutcher-Burman NTCP model…………………………...…….30
b. Relative Seriality model or Kallman model……………………….……32
c. EUD-based NTCP model……………………………………………….34
VII. Uncomplicated tumor control probability (UTCP). …………………..……..35
VIII. Calculation programs…………………………………………………….…..35
1. RADBIOMOD…………………………………………………………..…..35
2. BioSuite…………………………………………………………………..….36
3. Eudmodel.………………………………………………………...…….36
4. Rdbio-For……………………………………………………………………37
IX. TCP and NTCP calculation ………………………………………………….37
1. Monoisocentric and dual isocentric techniques comparison…………..…….38
2. Comparison between 5 fields and 7 fields IMRT treatment plans……….….42
Chapter III: Analyzing the reliability of early and late complication predictions …...47
I. Classification of the toxicities ………………………………………….……47
1. RTOG/EORTC ……………………………………………………….……..47
2. LENT/SOMA………………………………………………………………..47
3. CTCAE………………………………………………………………..……..47
II. The endpoints used in the performed calculation ……………………………47
1. Nasopharynx cancer …………………………………………………….…..48
2. Prostate cancer………………………………………...……………………..52
III. TCP and NTCP prediction ………………………………………..…………56
1. TCP prediction ……………………………………………………...………56
1.1. Comparison between radiobiological programs………………..……….57
1.1.1. Nasopharynx PTV……………………………………….………57
1.1.2. Prostate PTV…………………………………………….………58
1.2. The effect of repopulation in TCP prediction…………………...………59
1.2.1. Nasopharynx PTV………………………………………...……..59
1.2.2. Prostate PTV…………………………………………………….61
2. NTCP prediction……………………………………………………….……64
2.1.Comparison between radiobiological programs. ………………………64
3. The significance of dose constraints in predicting early and late radiation induced complications based on NTCP………………………………..……69
IV. TCP and NTCP correlation to dose constraints predictions…………….……78
1. Serial organs architecture. …………………………………………………..79
2. Parallel organs architecture………………………………………………….81
3. Serial-parallel organs architecture………………………………….………..82
Chapter IV: Optimising the prescription dose and fractionation regimens……..……85
I. Predicting NTCP as a function of time………………………………………85
II. UTCP calculation ………………………………………………………...….87
1. Calculation method and results………………………………………..…….87
1.1.Method………………………………………………………….……….87
1.2.Nasopharyngeal results……………………………………….…………88
1.3.Prostate results…………………………………………………..……….92
III. Improvement using UTCP…………...………………………………..……..96
IV. Improvement using Dose fractionation including BED………………...……97
1. Improving the nasopharyngeal treatment plan……………………………….97
2. Improving the prostate treatment plan…………………………………..…..104
Conclusion …………………………………………………………………..……...108
References ………………………………………………………………………….110
Résumé……………………………………………………………………………...123
ملخص ……………………………………………………………………………..….124
Abstract……………………………………………………………………………..125 |
| Côte titre : |
Dph/0325 |
|