University Sétif 1 FERHAT ABBAS Faculty of Sciences
Détail de l'auteur
Auteur Arrar ,Djihad |
Documents disponibles écrits par cet auteur



Titre : Analysis of implicit opinions in social networks Type de document : texte imprimé Auteurs : Arrar ,Djihad, Auteur ; Refoufi, Allaoua, Directeur de thèse Editeur : Setif:UFA Année de publication : 2021 Importance : 1 vol (63 f .) Format : 29 cm Langues : Français (fre) Catégories : Thèses & Mémoires:Informatique Mots-clés : sentiment analysis
Machine learning
Deep learningIndex. décimale : 004 - Informatique Résumé :
Sentiment analysis ( opinion mining) is one of the key tasks of NLP (Natural
Language Processing)that tries to infer people’s sentiments as expressed in text documents.
Sentiment analysis can be expressed explicitly or implicitly.
Most research focus in explicit sentiment analysis,however implicit sentiment analysis
has been overlooked and we believe that implicit opinions may carry more insight
and convey more information contained in the messages; this thesis tries to close the
gap into this less known area of research.
In this work, we use machine learning approach and natural language processing
techniques to understand the patterns and characteristics of reviews and predict the
sentiment .
Specifically, we build a computational model that can classify a given review as
either positive, negative based on the sentiments it reflects.
In this thesis, we also compared our best deep learning model, with our implemented
machine learning methods . Indeed our LSTM architecture outperformed
them all with a score of 84.2 %.Côte titre : MAI/0471 En ligne : https://drive.google.com/file/d/1HbdKsZxJ8_DKHpXNeZiha7zzixTjPB_1/view?usp=shari [...] Format de la ressource électronique : Analysis of implicit opinions in social networks [texte imprimé] / Arrar ,Djihad, Auteur ; Refoufi, Allaoua, Directeur de thèse . - [S.l.] : Setif:UFA, 2021 . - 1 vol (63 f .) ; 29 cm.
Langues : Français (fre)
Catégories : Thèses & Mémoires:Informatique Mots-clés : sentiment analysis
Machine learning
Deep learningIndex. décimale : 004 - Informatique Résumé :
Sentiment analysis ( opinion mining) is one of the key tasks of NLP (Natural
Language Processing)that tries to infer people’s sentiments as expressed in text documents.
Sentiment analysis can be expressed explicitly or implicitly.
Most research focus in explicit sentiment analysis,however implicit sentiment analysis
has been overlooked and we believe that implicit opinions may carry more insight
and convey more information contained in the messages; this thesis tries to close the
gap into this less known area of research.
In this work, we use machine learning approach and natural language processing
techniques to understand the patterns and characteristics of reviews and predict the
sentiment .
Specifically, we build a computational model that can classify a given review as
either positive, negative based on the sentiments it reflects.
In this thesis, we also compared our best deep learning model, with our implemented
machine learning methods . Indeed our LSTM architecture outperformed
them all with a score of 84.2 %.Côte titre : MAI/0471 En ligne : https://drive.google.com/file/d/1HbdKsZxJ8_DKHpXNeZiha7zzixTjPB_1/view?usp=shari [...] Format de la ressource électronique : Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité MAI/0471 MAI/0471 Mémoire Bibliothéque des sciences Anglais Disponible
Disponible