University Sétif 1 FERHAT ABBAS Faculty of Sciences
Détail de l'auteur
Auteur Hadj Azze, Yousra Chahinez |
Documents disponibles écrits par cet auteur



Generating Arabic Calligraphy using Generative Adversarial Networks (GANs) / Hadj Azze, Yousra Chahinez
![]()
Titre : Generating Arabic Calligraphy using Generative Adversarial Networks (GANs) Type de document : texte imprimé Auteurs : Hadj Azze, Yousra Chahinez, Auteur ; Abdelouahab Moussaoui, Directeur de thèse Editeur : Setif:UFA Année de publication : 2021 Importance : 1 vol (75 f .) Format : 29 cm Langues : Français (fre) Catégories : Thèses & Mémoires:Informatique Mots-clés : Arabic calligraphy
Convolutional Neural NetsIndex. décimale : 004 Informatique Résumé :
Arabic Calligraphy is a unique art and an important manifestation of Arabic culture, especially
because it is the first script that was used to write the Quran. It is used in many applications
such as glorify and beautify God’s names, conceive and plan out interior and exterior homes
decors and mosques, coin design, stories design in social media, etc. Despite the importance of
Arabic Calligraphy and its potential usefulness for many applications, there are no studies on
the automatic generation of calligraphy works, due to the complexity of the Arabic calligraphy
and the lack of training data.
Generative Adversarial Network (GAN) has made a breakthrough and great success in
many research areas in computer vision. Different GANs generate different outputs. In this
work, we apply GANs to generate Arabic calligraphy words. Conditional GAN for the image to
image translation (Pix2Pix) and Unpaired Image-to-Image Translation using Cycle-Consistent
Adversarial Networks (cycleGAN) are used. We treat the synthesis process as an image-to-image
translation task in order to synthesize Arabic Calligraphy images with specified style (Reqaa,
Farisi, and Diwani) from source font (ex. Arial) images. Then, the results of the generated images
are evaluated using native-Arabic human and Frechet Inception Distance (FID). The experiments
shows that the images generated using CycleGAN are better than Pix2Pix, which proved by the
FID score. The results often contains some erroneous and missing strokes.Côte titre : MAI/0473 En ligne : https://drive.google.com/file/d/1zMEQa5SpPZIhmJiEUZXfQwI91k8Vz1Lo/view?usp=shari [...] Format de la ressource électronique : Generating Arabic Calligraphy using Generative Adversarial Networks (GANs) [texte imprimé] / Hadj Azze, Yousra Chahinez, Auteur ; Abdelouahab Moussaoui, Directeur de thèse . - [S.l.] : Setif:UFA, 2021 . - 1 vol (75 f .) ; 29 cm.
Langues : Français (fre)
Catégories : Thèses & Mémoires:Informatique Mots-clés : Arabic calligraphy
Convolutional Neural NetsIndex. décimale : 004 Informatique Résumé :
Arabic Calligraphy is a unique art and an important manifestation of Arabic culture, especially
because it is the first script that was used to write the Quran. It is used in many applications
such as glorify and beautify God’s names, conceive and plan out interior and exterior homes
decors and mosques, coin design, stories design in social media, etc. Despite the importance of
Arabic Calligraphy and its potential usefulness for many applications, there are no studies on
the automatic generation of calligraphy works, due to the complexity of the Arabic calligraphy
and the lack of training data.
Generative Adversarial Network (GAN) has made a breakthrough and great success in
many research areas in computer vision. Different GANs generate different outputs. In this
work, we apply GANs to generate Arabic calligraphy words. Conditional GAN for the image to
image translation (Pix2Pix) and Unpaired Image-to-Image Translation using Cycle-Consistent
Adversarial Networks (cycleGAN) are used. We treat the synthesis process as an image-to-image
translation task in order to synthesize Arabic Calligraphy images with specified style (Reqaa,
Farisi, and Diwani) from source font (ex. Arial) images. Then, the results of the generated images
are evaluated using native-Arabic human and Frechet Inception Distance (FID). The experiments
shows that the images generated using CycleGAN are better than Pix2Pix, which proved by the
FID score. The results often contains some erroneous and missing strokes.Côte titre : MAI/0473 En ligne : https://drive.google.com/file/d/1zMEQa5SpPZIhmJiEUZXfQwI91k8Vz1Lo/view?usp=shari [...] Format de la ressource électronique : Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité MAI/0473 MAI/0473 Mémoire Bibliothéque des sciences Anglais Disponible
Disponible