University Sétif 1 FERHAT ABBAS Faculty of Sciences
Détail de l'auteur
Auteur Selmani ,saadeddine |
Documents disponibles écrits par cet auteur



Titre : An Interactive Personalized Recommender System Type de document : texte imprimé Auteurs : Selmani ,saadeddine, Auteur ; Drif,Ahlem, Directeur de thèse Editeur : Setif:UFA Année de publication : 2021 Importance : 1 vol (61 f .) Format : 29 cm Langues : Français (fre) Catégories : Thèses & Mémoires:Informatique Mots-clés : Recommender systems
Neural Recommender ModelsIndex. décimale : 004 - Informatique Résumé :
Recommender systems are broadly used to suggest goods (e.g., products, news, ser-
vices) that best match users' needs and preferences. The main challenge comes from
modeling the dependence between the various entities incorporating multifaceted infor-
mation such as user preferences, item attributes, and users' mutual in
uence, resulting
in more complex features. To deal with this issue, we design a recommender system
incorporating a collaborative ltering (CF) module and a stacking recommender mod-
ule. We introduce an interactive attention mechanism to model the mutual in
uence
relationship between aspect users and items. It allows mapping the original data to
higher-order feature interactions. Additionally, the stacked recommender, composed of
a set of regression models and a meta-learner, optimizes the weak learners' performance
with a strong learner. The developed stacking recommender considers the content for
recommendation to create a prole model for each user. Experiments on real-world
datasets demonstrate that the proposed algorithm can achieve more accurate predic-
tions and higher recommendation eciency.Côte titre : MAI/0520 En ligne : https://drive.google.com/file/d/1ZtxAepeudcr-piHs7plgVHPWSd11C16a/view?usp=shari [...] Format de la ressource électronique : An Interactive Personalized Recommender System [texte imprimé] / Selmani ,saadeddine, Auteur ; Drif,Ahlem, Directeur de thèse . - [S.l.] : Setif:UFA, 2021 . - 1 vol (61 f .) ; 29 cm.
Langues : Français (fre)
Catégories : Thèses & Mémoires:Informatique Mots-clés : Recommender systems
Neural Recommender ModelsIndex. décimale : 004 - Informatique Résumé :
Recommender systems are broadly used to suggest goods (e.g., products, news, ser-
vices) that best match users' needs and preferences. The main challenge comes from
modeling the dependence between the various entities incorporating multifaceted infor-
mation such as user preferences, item attributes, and users' mutual in
uence, resulting
in more complex features. To deal with this issue, we design a recommender system
incorporating a collaborative ltering (CF) module and a stacking recommender mod-
ule. We introduce an interactive attention mechanism to model the mutual in
uence
relationship between aspect users and items. It allows mapping the original data to
higher-order feature interactions. Additionally, the stacked recommender, composed of
a set of regression models and a meta-learner, optimizes the weak learners' performance
with a strong learner. The developed stacking recommender considers the content for
recommendation to create a prole model for each user. Experiments on real-world
datasets demonstrate that the proposed algorithm can achieve more accurate predic-
tions and higher recommendation eciency.Côte titre : MAI/0520 En ligne : https://drive.google.com/file/d/1ZtxAepeudcr-piHs7plgVHPWSd11C16a/view?usp=shari [...] Format de la ressource électronique : Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité MAI/0520 MAI/0520 Mémoire Bibliothéque des sciences Anglais Disponible
Disponible