Titre : |
Biomedical Data Analysis by Deep Architectures |
Type de document : |
texte imprimé |
Auteurs : |
Tcheir ,Abir, Auteur ; Abdelouahab Moussaoui, Directeur de thèse |
Editeur : |
Setif:UFA |
Année de publication : |
2021 |
Importance : |
1 vol (59 f .) |
Format : |
29 cm |
Langues : |
Français (fre) |
Catégories : |
Thèses & Mémoires:Informatique
|
Mots-clés : |
OVID-19
chestX-ray
DeepLearning
Attentionmaps |
Index. décimale : |
004 - Informatique |
Résumé : |
OVID-19causeslunginflammationandlesions,andchestX-rayimagesareremarkably
suitable fordifferentiatingthenewdiseasefrompatientswithotherlungdiseases.
In thispaper,weproposeacomputermodeltoclassifyX-rayimagesofpatientsdiagnosed
with COVID-19.Thedatasetsutilizedinthisexperimentaretwo.Firstly,adatasetof9545X-ray
images including4045imageswithconfirmedCovid-19disease,and5500imagesofNonCovid-19.
Secondly,adatasetof13677X-rayimagesincluding3424imageswithconfirmedCovid-19disease,
1345 imageswithconfirmedviralpneumonia,and8908imagesofnormalconditions.Theresults
suggest thatDeepLearningwithX-rayimagingmayextractsignificantbiomarkersrelated
to theCovid-19disease,Thisworkhasconsideredthewellknownpre-trainedarchitectures,
suchasEfficientNetB0,DenseNet121,Vgg16,ResNet50,InceptionV3andMobileNetV2forthe
experimental evaluation.
The performanceoftheconsideredarchitecturesisevaluatedbycomputingthecommonper-
formance measures.TheresultoftheexperimentalevaluationconfirmsthattheEfficientNetB0
pre-trained transferlearning-basedmodelofferedbetterclassificationaccuracy(98.40%)onthe
considered imagedataset1classificationand(97.20%)ontheconsideredimagedataset2,were
also generatedAttentionmapsforprediction,whichrepresentsakeyexplanatorystepaimedat
increasing confidenceinthefinaldecision. |
Côte titre : |
MAI/0528 |
En ligne : |
https://drive.google.com/file/d/1pF3-IE1TmVOr85fp2nF7Z0Wrn9T3QRSk/view?usp=shari [...] |
Format de la ressource électronique : |
pdf |
Biomedical Data Analysis by Deep Architectures [texte imprimé] / Tcheir ,Abir, Auteur ; Abdelouahab Moussaoui, Directeur de thèse . - [S.l.] : Setif:UFA, 2021 . - 1 vol (59 f .) ; 29 cm. Langues : Français ( fre)
Catégories : |
Thèses & Mémoires:Informatique
|
Mots-clés : |
OVID-19
chestX-ray
DeepLearning
Attentionmaps |
Index. décimale : |
004 - Informatique |
Résumé : |
OVID-19causeslunginflammationandlesions,andchestX-rayimagesareremarkably
suitable fordifferentiatingthenewdiseasefrompatientswithotherlungdiseases.
In thispaper,weproposeacomputermodeltoclassifyX-rayimagesofpatientsdiagnosed
with COVID-19.Thedatasetsutilizedinthisexperimentaretwo.Firstly,adatasetof9545X-ray
images including4045imageswithconfirmedCovid-19disease,and5500imagesofNonCovid-19.
Secondly,adatasetof13677X-rayimagesincluding3424imageswithconfirmedCovid-19disease,
1345 imageswithconfirmedviralpneumonia,and8908imagesofnormalconditions.Theresults
suggest thatDeepLearningwithX-rayimagingmayextractsignificantbiomarkersrelated
to theCovid-19disease,Thisworkhasconsideredthewellknownpre-trainedarchitectures,
suchasEfficientNetB0,DenseNet121,Vgg16,ResNet50,InceptionV3andMobileNetV2forthe
experimental evaluation.
The performanceoftheconsideredarchitecturesisevaluatedbycomputingthecommonper-
formance measures.TheresultoftheexperimentalevaluationconfirmsthattheEfficientNetB0
pre-trained transferlearning-basedmodelofferedbetterclassificationaccuracy(98.40%)onthe
considered imagedataset1classificationand(97.20%)ontheconsideredimagedataset2,were
also generatedAttentionmapsforprediction,whichrepresentsakeyexplanatorystepaimedat
increasing confidenceinthefinaldecision. |
Côte titre : |
MAI/0528 |
En ligne : |
https://drive.google.com/file/d/1pF3-IE1TmVOr85fp2nF7Z0Wrn9T3QRSk/view?usp=shari [...] |
Format de la ressource électronique : |
pdf |
|