University Sétif 1 FERHAT ABBAS Faculty of Sciences
Détail de l'auteur
Auteur Soumia Manaa |
Documents disponibles écrits par cet auteur
Ajouter le résultat dans votre panier Affiner la recherche
Titre : Asymptotic analysisforsomeboundaryvalue problems inthindomainswithfrictionlaws Type de document : texte imprimé Auteurs : Soumia Manaa, Auteur ; Benseridi Hamid, Directeur de thèse Année de publication : 2022 Importance : 1 vol (73 f .) Format : 29 cm Langues : Français (fre) Catégories : Thèses & Mémoires:Mathématique Mots-clés : Mathématique Résumé :
This thesis focuses on the study of the asymptotic analysis of some boundary value problems in a three-dimensional thin domain Ω???? with nonlinear boundary conditions of friction type on a part of the boundary. The main idea of this study is to show how to derive two-dimensional limit problems when the thickness tends to zero for three types of bilateral contacts problems involving Tresca's or Coulomb's friction law. We start first with an incompressible fluid governed by the Brinkman equation. Then the second problem concerns a mathematical model describing the static process of contact between a piezoelectric body and a foundation. Finally, the third work carried out is devoted to the transmission problem for the linear elasticity equation with a nonlinear dissipative term. Precisely, we have transformed the original problems posed in the domain Ω???? into new equivalent problems on a fixed domain Ω independent of a small parameter ε, and by using a new scale and several inequalities we prove some estimates and convergence theorems. Then, we obtain the limit problems with the weak generalized equation and its uniqueness.Côte titre : DM/0169 En ligne : http://dspace.univ-setif.dz:8888/jspui/bitstream/123456789/3913/1/E-th1996%20Man [...] Format de la ressource électronique : Asymptotic analysisforsomeboundaryvalue problems inthindomainswithfrictionlaws [texte imprimé] / Soumia Manaa, Auteur ; Benseridi Hamid, Directeur de thèse . - 2022 . - 1 vol (73 f .) ; 29 cm.
Langues : Français (fre)
Catégories : Thèses & Mémoires:Mathématique Mots-clés : Mathématique Résumé :
This thesis focuses on the study of the asymptotic analysis of some boundary value problems in a three-dimensional thin domain Ω???? with nonlinear boundary conditions of friction type on a part of the boundary. The main idea of this study is to show how to derive two-dimensional limit problems when the thickness tends to zero for three types of bilateral contacts problems involving Tresca's or Coulomb's friction law. We start first with an incompressible fluid governed by the Brinkman equation. Then the second problem concerns a mathematical model describing the static process of contact between a piezoelectric body and a foundation. Finally, the third work carried out is devoted to the transmission problem for the linear elasticity equation with a nonlinear dissipative term. Precisely, we have transformed the original problems posed in the domain Ω???? into new equivalent problems on a fixed domain Ω independent of a small parameter ε, and by using a new scale and several inequalities we prove some estimates and convergence theorems. Then, we obtain the limit problems with the weak generalized equation and its uniqueness.Côte titre : DM/0169 En ligne : http://dspace.univ-setif.dz:8888/jspui/bitstream/123456789/3913/1/E-th1996%20Man [...] Format de la ressource électronique : Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité DM/0169 DM/0169 Thèse Bibliothéque des sciences Anglais Disponible
Disponible