University Sétif 1 FERHAT ABBAS Faculty of Sciences
Détail de l'auteur
Auteur Youcef Attoui |
Documents disponibles écrits par cet auteur



Automatic Detection of Anatomical Landmarks for Image Registration in Radiotherapy / M.Oussama Mebarki
![]()
Titre : Automatic Detection of Anatomical Landmarks for Image Registration in Radiotherapy Type de document : texte imprimé Auteurs : M.Oussama Mebarki, Auteur ; Youcef Attoui, Auteur ; Hacene Azizi, Directeur de thèse Année de publication : 2022 Importance : 1 vol (74 f.) Format : 29 cm Langues : Anglais (eng) Catégories : Physique Mots-clés : Point matching
Image registrationIndex. décimale : 530-Physique Résumé :
Anatomical landmark correspondences in Radiation Therapy imaging provides
extra guidance information for the medical imaging registration. However, manual
landmark identification is intensive and time consuming. Therefore, developing an
end-to-end deep learning approach to automatically detect landmark correspondences
in pairs of two-dimensional (2D) images of Cone-Beam CT (CBCT) and planning-CT
is extremely important. Our method consists of a U-net-based convolutional neural
network that has been trained to recognize salient spots in both image modalities
and anticipate matching probabilities for landmark pairings. We trained our method
using 58 scans of 2D-axial in the pelvic area, ranging from 140 to 160 slices CTs and
86 to 88 slices in-room CTs. The training results showed promising results in terms
of landmark predictions, with high accuracy and low loss scores. On the other hand,
we compared the SIFT descriptor to another SIFT variant approach for matching
key-points. We employed the Mean-Squared-Error (MSE) metric to compare our
model to a traditional type of image registration called Elastix. Both techniques
produced acceptable accuracy values, although our method is slightly more accurate.Côte titre : MAPH/0556 En ligne : https://drive.google.com/file/d/15uU7N68-qxuq-6BRE20ADiyaIE9gX41G/view?usp=shari [...] Format de la ressource électronique : Automatic Detection of Anatomical Landmarks for Image Registration in Radiotherapy [texte imprimé] / M.Oussama Mebarki, Auteur ; Youcef Attoui, Auteur ; Hacene Azizi, Directeur de thèse . - 2022 . - 1 vol (74 f.) ; 29 cm.
Langues : Anglais (eng)
Catégories : Physique Mots-clés : Point matching
Image registrationIndex. décimale : 530-Physique Résumé :
Anatomical landmark correspondences in Radiation Therapy imaging provides
extra guidance information for the medical imaging registration. However, manual
landmark identification is intensive and time consuming. Therefore, developing an
end-to-end deep learning approach to automatically detect landmark correspondences
in pairs of two-dimensional (2D) images of Cone-Beam CT (CBCT) and planning-CT
is extremely important. Our method consists of a U-net-based convolutional neural
network that has been trained to recognize salient spots in both image modalities
and anticipate matching probabilities for landmark pairings. We trained our method
using 58 scans of 2D-axial in the pelvic area, ranging from 140 to 160 slices CTs and
86 to 88 slices in-room CTs. The training results showed promising results in terms
of landmark predictions, with high accuracy and low loss scores. On the other hand,
we compared the SIFT descriptor to another SIFT variant approach for matching
key-points. We employed the Mean-Squared-Error (MSE) metric to compare our
model to a traditional type of image registration called Elastix. Both techniques
produced acceptable accuracy values, although our method is slightly more accurate.Côte titre : MAPH/0556 En ligne : https://drive.google.com/file/d/15uU7N68-qxuq-6BRE20ADiyaIE9gX41G/view?usp=shari [...] Format de la ressource électronique : Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité MAPH/0556 MAPH/0556 Mémoire Bibliothéque des sciences Anglais Disponible
Disponible