University Sétif 1 FERHAT ABBAS Faculty of Sciences
Détail de l'auteur
Auteur Imad Eddine Kettaf |
Documents disponibles écrits par cet auteur



Titre : Community Detection with Deep Graph Neural Networks Type de document : texte imprimé Auteurs : Imad Eddine Kettaf, Auteur ; Abdelouahab Moussaoui, Directeur de thèse Année de publication : 2022 Importance : 1 vol (79 f .) Format : 29cm Langues : Français (fre) Catégories : Thèses & Mémoires:Informatique Mots-clés : Informatique Index. décimale : 004 Informatique Résumé :
n recent years, Deep Neural Networks (DNN) have achieved significant
advances in image categorization and speech recognition. Using DNN for
community identification, such as in social networks, remains a difficult challenge.
Furthermore, the latest sophisticated techniques of executing community
detection tasks employ Graph Neural Networks (GNN), a novel DNN
methodology.
In this thesis, we investigated the applicability of these new techniques
for detecting communities by creating a new GNN-based learning model that
combines two of the most recent state-of-the-art approaches in community
detection, Graph Convolutional Networks (GCN) and Graph Attention Networks
(GAT). Our suggested model is made up of four layers and performs
semi-supervised node classification to discover communities. The first two
layers are GCN layers, followed by a GAT layer, then ended with another
GCN layer.
We utilized four distinct datasets from the pytorch-geometric package
for training and testing our model. These datasets are ”Cora,” ”Citeseer,”
”Pubmed,” and ”Ego-Facebook.”
This architecutre of our model enabled it to outperform the other comparative
techniques as well as certain state-of-the-art approaches.Côte titre : MAI/0607 En ligne : https://drive.google.com/file/d/1bo_KtDR87-Ef9Z47Q7vUuWqfQnQmG0Q9/view?usp=share [...] Format de la ressource électronique : Community Detection with Deep Graph Neural Networks [texte imprimé] / Imad Eddine Kettaf, Auteur ; Abdelouahab Moussaoui, Directeur de thèse . - 2022 . - 1 vol (79 f .) ; 29cm.
Langues : Français (fre)
Catégories : Thèses & Mémoires:Informatique Mots-clés : Informatique Index. décimale : 004 Informatique Résumé :
n recent years, Deep Neural Networks (DNN) have achieved significant
advances in image categorization and speech recognition. Using DNN for
community identification, such as in social networks, remains a difficult challenge.
Furthermore, the latest sophisticated techniques of executing community
detection tasks employ Graph Neural Networks (GNN), a novel DNN
methodology.
In this thesis, we investigated the applicability of these new techniques
for detecting communities by creating a new GNN-based learning model that
combines two of the most recent state-of-the-art approaches in community
detection, Graph Convolutional Networks (GCN) and Graph Attention Networks
(GAT). Our suggested model is made up of four layers and performs
semi-supervised node classification to discover communities. The first two
layers are GCN layers, followed by a GAT layer, then ended with another
GCN layer.
We utilized four distinct datasets from the pytorch-geometric package
for training and testing our model. These datasets are ”Cora,” ”Citeseer,”
”Pubmed,” and ”Ego-Facebook.”
This architecutre of our model enabled it to outperform the other comparative
techniques as well as certain state-of-the-art approaches.Côte titre : MAI/0607 En ligne : https://drive.google.com/file/d/1bo_KtDR87-Ef9Z47Q7vUuWqfQnQmG0Q9/view?usp=share [...] Format de la ressource électronique : Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité MAI/0607 MAI/0607 Mémoire Bibliothéque des sciences Anglais Disponible
Disponible