University Sétif 1 FERHAT ABBAS Faculty of Sciences
Détail de l'auteur
Auteur Lynda Messah |
Documents disponibles écrits par cet auteur



Titre : Content Based Recommender System Using Deep Leaning Type de document : texte imprimé Auteurs : Lynda Messah, Auteur ; Chahrazed Bendaas, Auteur ; Mediani,Chahrazed, Directeur de thèse Année de publication : 2022 Importance : 1 vol (73 f .) Format : 29cm Langues : Français (fre) Catégories : Thèses & Mémoires:Informatique Mots-clés : Recommender system
content-basedIndex. décimale : 004 Informatique Résumé :
Recommender systems have the effect of leading users to interesting objects in a vast
universe of available possibilities in a personalized way. Content-based recommendation
systems try to suggest items that are relevant to those that a user has previously enjoyed.
Indeed, a content-based recommender’s basic process requires combining the properties
of a user profile, which stores preferences and interests, with the attributes of a content
object (item), to suggest new interesting items to the user.
In this thesis, we presented a new approach to a recommendation based on content
using deep learning to provide problems related to avoid traditional approaches while
improving system quality and performance.Côte titre : MAI/0609 En ligne : https://drive.google.com/file/d/17Ab3XkrA_UcDP_v8ndr5uOZDVR4gmln2/view?usp=share [...] Format de la ressource électronique : Content Based Recommender System Using Deep Leaning [texte imprimé] / Lynda Messah, Auteur ; Chahrazed Bendaas, Auteur ; Mediani,Chahrazed, Directeur de thèse . - 2022 . - 1 vol (73 f .) ; 29cm.
Langues : Français (fre)
Catégories : Thèses & Mémoires:Informatique Mots-clés : Recommender system
content-basedIndex. décimale : 004 Informatique Résumé :
Recommender systems have the effect of leading users to interesting objects in a vast
universe of available possibilities in a personalized way. Content-based recommendation
systems try to suggest items that are relevant to those that a user has previously enjoyed.
Indeed, a content-based recommender’s basic process requires combining the properties
of a user profile, which stores preferences and interests, with the attributes of a content
object (item), to suggest new interesting items to the user.
In this thesis, we presented a new approach to a recommendation based on content
using deep learning to provide problems related to avoid traditional approaches while
improving system quality and performance.Côte titre : MAI/0609 En ligne : https://drive.google.com/file/d/17Ab3XkrA_UcDP_v8ndr5uOZDVR4gmln2/view?usp=share [...] Format de la ressource électronique : Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité MAI/0609 MAI/0609 Mémoire Bibliothéque des sciences Anglais Disponible
Disponible