University Sétif 1 FERHAT ABBAS Faculty of Sciences
Détail de l'auteur
Auteur Islem Abdelhakim Maboud |
Documents disponibles écrits par cet auteur



Titre : Hate speech detection in tweets Type de document : texte imprimé Auteurs : Islem Abdelhakim Maboud, Auteur ; yasmine Agoun, Auteur ; Refoufi, Allaoua, Directeur de thèse Année de publication : 2022 Importance : 1 vol (59 f .) Format : 29cm Langues : Français (fre) Catégories : Thèses & Mémoires:Informatique Mots-clés : hate speech
machine learningIndex. décimale : 004 Informatique Résumé :
In recent years, Hate speech online is constantly increasing on different social media platforms by using aggressive,
violent or offensive language to a specific individual or group , which has become a major issue .
Due to the size of social media and unfiltered feed of messages posted in social media that can contain hate speech
targeted, we are interested in how to reduce hate on social media. In an effort to identify solutions for the problem
of hate speech in social media, we propose an approach to automatically classify tweets on Twitter into two classes:
hate speech and neutral speech. Using the Twitter dataset with deep learning using BERT based on transformers
to learn contextual relations between words,we achieved an accuracy of 95.9%.and a recall of 95.9%.and F1 of
95.9%..
We also developed a React web application using tensorflow-serving serves as a real time application of our
model ,the user can enter a tweet given in the text box and know if it’s a hateful expression or not.Côte titre : MAI/0614 En ligne : https://drive.google.com/file/d/1ffZp67082LaQmk11oXyonSCIs6qu82U8/view?usp=share [...] Format de la ressource électronique : Hate speech detection in tweets [texte imprimé] / Islem Abdelhakim Maboud, Auteur ; yasmine Agoun, Auteur ; Refoufi, Allaoua, Directeur de thèse . - 2022 . - 1 vol (59 f .) ; 29cm.
Langues : Français (fre)
Catégories : Thèses & Mémoires:Informatique Mots-clés : hate speech
machine learningIndex. décimale : 004 Informatique Résumé :
In recent years, Hate speech online is constantly increasing on different social media platforms by using aggressive,
violent or offensive language to a specific individual or group , which has become a major issue .
Due to the size of social media and unfiltered feed of messages posted in social media that can contain hate speech
targeted, we are interested in how to reduce hate on social media. In an effort to identify solutions for the problem
of hate speech in social media, we propose an approach to automatically classify tweets on Twitter into two classes:
hate speech and neutral speech. Using the Twitter dataset with deep learning using BERT based on transformers
to learn contextual relations between words,we achieved an accuracy of 95.9%.and a recall of 95.9%.and F1 of
95.9%..
We also developed a React web application using tensorflow-serving serves as a real time application of our
model ,the user can enter a tweet given in the text box and know if it’s a hateful expression or not.Côte titre : MAI/0614 En ligne : https://drive.google.com/file/d/1ffZp67082LaQmk11oXyonSCIs6qu82U8/view?usp=share [...] Format de la ressource électronique : Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité MAI/0614 MAI/0614 Mémoire Bibliothéque des sciences Anglais Disponible
Disponible