University Sétif 1 FERHAT ABBAS Faculty of Sciences
Détail de l'auteur
Auteur Nesrine bahri |
Documents disponibles écrits par cet auteur



Titre : A new primal-dual algorithm for linear optimization Type de document : texte imprimé Auteurs : Nesrine bahri, Auteur ; Roumaissa Djidel, Auteur ; Samia Kettab, Directeur de thèse Année de publication : 2022 Importance : 1 vol (54 f.) Format : 29 cm Langues : Anglais (eng) Catégories : Mathématique Mots-clés : Linear programming
Interior point methodsIndex. décimale : 510-Mathématique Résumé :
Primal and dual interior-point methods have been well known as the most effective
methods for solving wide classes of optimization problems, such that, linear optimization
problem. These methods have a polynomial convergence and are credited of a good
numerical behaviour. In this thesis, we are interested essentially in the comparative
numerical study of primal-dual interior point algorithms based on kernel functions for linear
optimization problems. The realized numerical tests show the effect of the kernel functions
on the behavior of the considered algorithm.
Côte titre : MAM/0611 En ligne : https://drive.google.com/file/d/15ABTg7opjp1gqsuU6Z2v0IlNGCDmwTSQ/view?usp=share [...] Format de la ressource électronique : A new primal-dual algorithm for linear optimization [texte imprimé] / Nesrine bahri, Auteur ; Roumaissa Djidel, Auteur ; Samia Kettab, Directeur de thèse . - 2022 . - 1 vol (54 f.) ; 29 cm.
Langues : Anglais (eng)
Catégories : Mathématique Mots-clés : Linear programming
Interior point methodsIndex. décimale : 510-Mathématique Résumé :
Primal and dual interior-point methods have been well known as the most effective
methods for solving wide classes of optimization problems, such that, linear optimization
problem. These methods have a polynomial convergence and are credited of a good
numerical behaviour. In this thesis, we are interested essentially in the comparative
numerical study of primal-dual interior point algorithms based on kernel functions for linear
optimization problems. The realized numerical tests show the effect of the kernel functions
on the behavior of the considered algorithm.
Côte titre : MAM/0611 En ligne : https://drive.google.com/file/d/15ABTg7opjp1gqsuU6Z2v0IlNGCDmwTSQ/view?usp=share [...] Format de la ressource électronique : Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité MAM/0611 MAM/0611 Mémoire Bibliothéque des sciences Anglais Disponible
Disponible