University Sétif 1 FERHAT ABBAS Faculty of Sciences
Détail de l'auteur
Auteur Assil Guenfoud |
Documents disponibles écrits par cet auteur



Classification and Forecasting using Deep Learning Approach for Time Series Gene Expression Data / Abderraouf Aymen Bensemra
![]()
Titre : Classification and Forecasting using Deep Learning Approach for Time Series Gene Expression Data Type de document : texte imprimé Auteurs : Abderraouf Aymen Bensemra, Auteur ; Assil Guenfoud, Auteur ; Nasri,Khaled, Directeur de thèse Année de publication : 2023 Importance : 1 vol (40 f .) Format : 29cm Langues : Français (fre) Catégories : Thèses & Mémoires:Informatique Mots-clés : Informatique Index. décimale : 004 Informatique Résumé : Time series gene expression analysis reveals dynamic shifts in gene expression patterns
over time, aiding the study of regulatory genes, signaling pathways, and biological processes.
It provides insights into development, environmental responses, and disease progression,
deepening our understanding and enabling specialized interventions.
Deep learning algorithms for gene expression time series forecasting offer significant benefits,
accurately predicting future expression levels by capturing temporal dependencies
and non-linear correlations. They enhance precision medicine and our understanding of
biological processes. In our study, in the data GSE6168 we evaluated the effectiveness of
Long Short-Term Memory where the best RMSE we got is:0.278 and Temporal Convolutional
Networks where we got a total RMSE of:0.268Côte titre : MAI/0704 En ligne : https://drive.google.com/file/d/15WXNGAo0lEgxoqlRMtyRXTe49Nu7xX_u/view?usp=drive [...] Format de la ressource électronique : Classification and Forecasting using Deep Learning Approach for Time Series Gene Expression Data [texte imprimé] / Abderraouf Aymen Bensemra, Auteur ; Assil Guenfoud, Auteur ; Nasri,Khaled, Directeur de thèse . - 2023 . - 1 vol (40 f .) ; 29cm.
Langues : Français (fre)
Catégories : Thèses & Mémoires:Informatique Mots-clés : Informatique Index. décimale : 004 Informatique Résumé : Time series gene expression analysis reveals dynamic shifts in gene expression patterns
over time, aiding the study of regulatory genes, signaling pathways, and biological processes.
It provides insights into development, environmental responses, and disease progression,
deepening our understanding and enabling specialized interventions.
Deep learning algorithms for gene expression time series forecasting offer significant benefits,
accurately predicting future expression levels by capturing temporal dependencies
and non-linear correlations. They enhance precision medicine and our understanding of
biological processes. In our study, in the data GSE6168 we evaluated the effectiveness of
Long Short-Term Memory where the best RMSE we got is:0.278 and Temporal Convolutional
Networks where we got a total RMSE of:0.268Côte titre : MAI/0704 En ligne : https://drive.google.com/file/d/15WXNGAo0lEgxoqlRMtyRXTe49Nu7xX_u/view?usp=drive [...] Format de la ressource électronique : Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité MAI/0704 MAI/0704 Mémoire Bibliothéque des sciences Anglais Disponible
Disponible