University Sétif 1 FERHAT ABBAS Faculty of Sciences
Détail de l'auteur
Auteur hanane Bouaziz |
Documents disponibles écrits par cet auteur



Enhancing a Content-Based Recommender System using Deep Learning for Online Resources / hanane Bouaziz
![]()
Titre : Enhancing a Content-Based Recommender System using Deep Learning for Online Resources Type de document : texte imprimé Auteurs : hanane Bouaziz, Auteur ; meriem Deghmoum, Auteur ; Mediani,Chahrazed, Directeur de thèse Année de publication : 2023 Importance : 1 vol (52 f .) Format : 29cm Langues : Français (fre) Catégories : Thèses & Mémoires:Informatique Mots-clés : Recommender system
content-basedIndex. décimale : 004 Informatique Résumé : In light of the expansion of digital content and the escalating need for personalized recommendations,
recommender systems have emerged as essential tools in facilitating user exploration and involvement.
Among the different approaches available, content-based recommender systems utilize the inherent
attributes of items to produce recommendations.
in This thesis we present the design and implementation of a deep learning-based content-based
recommender system. We explore different deep learning architectures, including TF-IDF,Word2Vec,
TF-IDF with Logistic Regression,Word2Vec with Logistic Regression, and LSTM models, to capture
item and user preferences from the available data. These models are evaluated using precision,
recall, and F1-score metrics to assess their performance in recommending relevant items. with the
goal of improving the quality and performance of such systems.Côte titre : MAI/0705 En ligne : https://drive.google.com/file/d/1LmOPrce-ApSpOeoLja6XBN8Rcb-k-uAH/view?usp=drive [...] Format de la ressource électronique : Enhancing a Content-Based Recommender System using Deep Learning for Online Resources [texte imprimé] / hanane Bouaziz, Auteur ; meriem Deghmoum, Auteur ; Mediani,Chahrazed, Directeur de thèse . - 2023 . - 1 vol (52 f .) ; 29cm.
Langues : Français (fre)
Catégories : Thèses & Mémoires:Informatique Mots-clés : Recommender system
content-basedIndex. décimale : 004 Informatique Résumé : In light of the expansion of digital content and the escalating need for personalized recommendations,
recommender systems have emerged as essential tools in facilitating user exploration and involvement.
Among the different approaches available, content-based recommender systems utilize the inherent
attributes of items to produce recommendations.
in This thesis we present the design and implementation of a deep learning-based content-based
recommender system. We explore different deep learning architectures, including TF-IDF,Word2Vec,
TF-IDF with Logistic Regression,Word2Vec with Logistic Regression, and LSTM models, to capture
item and user preferences from the available data. These models are evaluated using precision,
recall, and F1-score metrics to assess their performance in recommending relevant items. with the
goal of improving the quality and performance of such systems.Côte titre : MAI/0705 En ligne : https://drive.google.com/file/d/1LmOPrce-ApSpOeoLja6XBN8Rcb-k-uAH/view?usp=drive [...] Format de la ressource électronique : Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité MAI/0705 MAI/0705 Mémoire Bibliothéque des sciences Anglais Disponible
Disponible