University Sétif 1 FERHAT ABBAS Faculty of Sciences
Détail de l'auteur
Auteur Manar Nedjai |
Documents disponibles écrits par cet auteur



Enhancing a Collaborative Recommender System Based on Deep Learning for Online Resources / Manar Nedjai
![]()
Titre : Enhancing a Collaborative Recommender System Based on Deep Learning for Online Resources Type de document : texte imprimé Auteurs : Manar Nedjai, Auteur ; Roumaissa Dana, Auteur ; Mediani,Chahrazed, Directeur de thèse Année de publication : 2023 Importance : 1 vol (59 f .) Format : 29cm Langues : Français (fre) Catégories : Thèses & Mémoires:Informatique Mots-clés : Collaborative filtering
Recommender systemsIndex. décimale : 004 Informatique Résumé : Recommender Systems are software that can be used to filter out data from the volumes of
data available online and provide recommendations to users in their area of interest. Recommender
systems are classified into three types which are collaborative, content-based and hybrid.
Among the proposed classifications, the collaborative filtering approach consists of finding
the item that satisfies the user using other similar users evaluations. In recent years, deep neural
networks have yielded immense success on many fields. However, some recent works have
focused on combining deep learning with recommendation and have shown improvement in performance.
In this thesis, we presented a novel model CFDAE to recommend online resources
based on collaborative filtering using the denoising autoencoder, our model can perform good
results in rating prediction of explicit feedback.Côte titre : MAI/0708 En ligne : https://drive.google.com/file/d/1gGj42ULJFZ11uwRcTO-gI1ySus9bQy8j/view?usp=drive [...] Format de la ressource électronique : Enhancing a Collaborative Recommender System Based on Deep Learning for Online Resources [texte imprimé] / Manar Nedjai, Auteur ; Roumaissa Dana, Auteur ; Mediani,Chahrazed, Directeur de thèse . - 2023 . - 1 vol (59 f .) ; 29cm.
Langues : Français (fre)
Catégories : Thèses & Mémoires:Informatique Mots-clés : Collaborative filtering
Recommender systemsIndex. décimale : 004 Informatique Résumé : Recommender Systems are software that can be used to filter out data from the volumes of
data available online and provide recommendations to users in their area of interest. Recommender
systems are classified into three types which are collaborative, content-based and hybrid.
Among the proposed classifications, the collaborative filtering approach consists of finding
the item that satisfies the user using other similar users evaluations. In recent years, deep neural
networks have yielded immense success on many fields. However, some recent works have
focused on combining deep learning with recommendation and have shown improvement in performance.
In this thesis, we presented a novel model CFDAE to recommend online resources
based on collaborative filtering using the denoising autoencoder, our model can perform good
results in rating prediction of explicit feedback.Côte titre : MAI/0708 En ligne : https://drive.google.com/file/d/1gGj42ULJFZ11uwRcTO-gI1ySus9bQy8j/view?usp=drive [...] Format de la ressource électronique : Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité MAI/0708 MAI/0708 Mémoire Bibliothéque des sciences Anglais Disponible
Disponible