University Sétif 1 FERHAT ABBAS Faculty of Sciences
Détail de l'auteur
Auteur Ouail Saim |
Documents disponibles écrits par cet auteur



Titre : Deep Learning Models for Colorectal Cancer Detection and Classification Type de document : texte imprimé Auteurs : Mohamed Islem Belhaddad, Auteur ; Ouail Saim, Auteur ; Abdelouahab Moussaoui, Directeur de thèse Année de publication : 2023 Importance : 1 vol (119 f .) Format : 29cm Langues : Français (fre) Catégories : Thèses & Mémoires:Informatique Mots-clés : Colorectal cancer
Deep learningIndex. décimale : 004 - Informatique Résumé : Colorectal cancer is a leading cause of cancer-related deaths worldwide, and early detection
is crucial for improving patient outcomes. In recent years, deep learning has emerged
as a promising approach for automated cancer detection and classification. In this thesis,
we propose a framework for using deep learning models to detect and classify colorectal
cancer based on histopathological images. We investigate the performance of different
deep learning architectures, including convolutional neural networks, on a dataset of colorectal
cancer images. Our results demonstrate the potential of deep learning models
for accurately detecting and classifying colorectal cancer, with an accuracy of over 99.2%
achieved in some cases. We also discuss the limitations and challenges of using deep
learning for cancer detection and provide recommendations for future research. Overall,
our study highlights the potential of deep learning as a powerful tool for improving cancer
diagnosis and treatment.Côte titre : MAI/0710 En ligne : https://drive.google.com/file/d/1QClwTrsGi4-9LMu7MxWPhniE-F2cAjYz/view?usp=drive [...] Format de la ressource électronique : Deep Learning Models for Colorectal Cancer Detection and Classification [texte imprimé] / Mohamed Islem Belhaddad, Auteur ; Ouail Saim, Auteur ; Abdelouahab Moussaoui, Directeur de thèse . - 2023 . - 1 vol (119 f .) ; 29cm.
Langues : Français (fre)
Catégories : Thèses & Mémoires:Informatique Mots-clés : Colorectal cancer
Deep learningIndex. décimale : 004 - Informatique Résumé : Colorectal cancer is a leading cause of cancer-related deaths worldwide, and early detection
is crucial for improving patient outcomes. In recent years, deep learning has emerged
as a promising approach for automated cancer detection and classification. In this thesis,
we propose a framework for using deep learning models to detect and classify colorectal
cancer based on histopathological images. We investigate the performance of different
deep learning architectures, including convolutional neural networks, on a dataset of colorectal
cancer images. Our results demonstrate the potential of deep learning models
for accurately detecting and classifying colorectal cancer, with an accuracy of over 99.2%
achieved in some cases. We also discuss the limitations and challenges of using deep
learning for cancer detection and provide recommendations for future research. Overall,
our study highlights the potential of deep learning as a powerful tool for improving cancer
diagnosis and treatment.Côte titre : MAI/0710 En ligne : https://drive.google.com/file/d/1QClwTrsGi4-9LMu7MxWPhniE-F2cAjYz/view?usp=drive [...] Format de la ressource électronique : Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité MAI/0710 MAI/0710 Mémoire Bibliothéque des sciences Anglais Disponible
Disponible