University Sétif 1 FERHAT ABBAS Faculty of Sciences
Détail de l'auteur
Auteur Faycal Zetoutou |
Documents disponibles écrits par cet auteur



Titre : Smart Web application to support medical diagnosis decision making Type de document : texte imprimé Auteurs : Faycal Zetoutou, Auteur ; Zakaria Nedjem Eddine Mahdadi, Auteur ; Ferradji,Mohamed Abderraouf, Directeur de thèse Année de publication : 2023 Importance : 1 vol (64 f .) Format : 29cm Langues : Français (fre) Catégories : Thèses & Mémoires:Informatique Mots-clés : Artificial Intelligence
Machine LearningIndex. décimale : 004 Informatique Résumé : Despite the impressive research results related to the application of artificial intelligence in the
medical field, its exploitation in the real clinical setting, especially in diagnostic decision making,
remains very limited. Therefore, our objective in this work is to develop a smart web application
that supports medical professionals in making efficient diagnostic decisions. Based on deep learning
techniques and intelligent prediction models, the proposed system provides doctors with accurate
predictions that aim to promote their medical diagnostic skills and enhance the patient healthcare
quality. Furthermore, this smart web application highlights the importance of collaboration in medical
diagnosis while facilitating efficient interaction and knowledge sharing among medical professionals.Côte titre : MAI/0711 En ligne : https://drive.google.com/file/d/1ovs5Z4fZ6gJD2GjmSnxvFi99F4mjm4Rc/view?usp=drive [...] Format de la ressource électronique : Smart Web application to support medical diagnosis decision making [texte imprimé] / Faycal Zetoutou, Auteur ; Zakaria Nedjem Eddine Mahdadi, Auteur ; Ferradji,Mohamed Abderraouf, Directeur de thèse . - 2023 . - 1 vol (64 f .) ; 29cm.
Langues : Français (fre)
Catégories : Thèses & Mémoires:Informatique Mots-clés : Artificial Intelligence
Machine LearningIndex. décimale : 004 Informatique Résumé : Despite the impressive research results related to the application of artificial intelligence in the
medical field, its exploitation in the real clinical setting, especially in diagnostic decision making,
remains very limited. Therefore, our objective in this work is to develop a smart web application
that supports medical professionals in making efficient diagnostic decisions. Based on deep learning
techniques and intelligent prediction models, the proposed system provides doctors with accurate
predictions that aim to promote their medical diagnostic skills and enhance the patient healthcare
quality. Furthermore, this smart web application highlights the importance of collaboration in medical
diagnosis while facilitating efficient interaction and knowledge sharing among medical professionals.Côte titre : MAI/0711 En ligne : https://drive.google.com/file/d/1ovs5Z4fZ6gJD2GjmSnxvFi99F4mjm4Rc/view?usp=drive [...] Format de la ressource électronique : Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité MAI/0711 MAI/0711 Mémoire Bibliothéque des sciences Anglais Disponible
Disponible