University Sétif 1 FERHAT ABBAS Faculty of Sciences
Détail de l'auteur
Auteur Oualid Akkouche |
Documents disponibles écrits par cet auteur



Titre : Deep Vision Transformer for Heart Disease Classification and Prediction Type de document : texte imprimé Auteurs : Oualid Akkouche, Auteur ; Adlene Bekhouche, Auteur ; Abdelouahab Moussaoui, Auteur Année de publication : 2023 Importance : 1 vol (76 f .) Format : 29cm Langues : Français (fre) Catégories : Thèses & Mémoires:Informatique Mots-clés : Machine learning Index. décimale : 004 Informatique Résumé : The field of computer vision has for years been dominated by Convolutional Neural
Networks (CNNs) and Recurrent Neural Network (RNN) in the medical domain .
However, there are various other Deep Learning (DL) techniques that have became very
popular in this space. Transformers are an example of the deep learning technique that
has been gaining popularity in the recent years. In this work, we studied the performance
of Vision Transformers on Heart Disease classification tasks and we have proposed a new
model depending on ViTs. We also proposed other models and architectures such as,
CNN, MLP, ResNet-1D, AlexNet-1D,LSTM,GRU... . Finally, we trained the proposed
models on PTB-XL dataset and evaluated them. We compared the performance of ViTs
to that of others and the later showed an accuracy higher than the others (98%).Côte titre : MAI/0713 En ligne : https://drive.google.com/file/d/1bN4NBnFcNpT_47naBdw-aAmzCUIrZhBW/view?usp=drive [...] Format de la ressource électronique : Deep Vision Transformer for Heart Disease Classification and Prediction [texte imprimé] / Oualid Akkouche, Auteur ; Adlene Bekhouche, Auteur ; Abdelouahab Moussaoui, Auteur . - 2023 . - 1 vol (76 f .) ; 29cm.
Langues : Français (fre)
Catégories : Thèses & Mémoires:Informatique Mots-clés : Machine learning Index. décimale : 004 Informatique Résumé : The field of computer vision has for years been dominated by Convolutional Neural
Networks (CNNs) and Recurrent Neural Network (RNN) in the medical domain .
However, there are various other Deep Learning (DL) techniques that have became very
popular in this space. Transformers are an example of the deep learning technique that
has been gaining popularity in the recent years. In this work, we studied the performance
of Vision Transformers on Heart Disease classification tasks and we have proposed a new
model depending on ViTs. We also proposed other models and architectures such as,
CNN, MLP, ResNet-1D, AlexNet-1D,LSTM,GRU... . Finally, we trained the proposed
models on PTB-XL dataset and evaluated them. We compared the performance of ViTs
to that of others and the later showed an accuracy higher than the others (98%).Côte titre : MAI/0713 En ligne : https://drive.google.com/file/d/1bN4NBnFcNpT_47naBdw-aAmzCUIrZhBW/view?usp=drive [...] Format de la ressource électronique : Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité MAI/0713 MAI/0713 Mémoire Bibliothéque des sciences Anglais Disponible
Disponible