Titre : |
Dead Trees Detection Based on Machine Learning and Remote Sensing |
Type de document : |
texte imprimé |
Auteurs : |
Manelle Benarbia, Auteur ; Nabila Chergui, Auteur |
Editeur : |
Setif:UFA |
Année de publication : |
2023 |
Importance : |
1 vol (51 f .) |
Format : |
29 cm |
Langues : |
Anglais (eng) |
Catégories : |
Thèses & Mémoires:Informatique
|
Mots-clés : |
Dead tree detection Artificial Intelligence Machine
Learning Deep Learning Remote Sensing Vegetation Indices Classification Détection des arbres morts Intelligence Artificielle Apprentissage
Automatique Apprentissage Approfondu télédétection Indices de Vegetations |
Index. décimale : |
004 - Informatique |
Résumé : |
Dead tree detection utilising machine learning and remote sensing
holds significance in efficient and scalable monitoring, early disturbance
detection, assessing ecosystem health, managing resources, and planning
conservation efforts. This approach facilitates timely interventions, enhances
forest management practices, and contributes to environmental
monitoring, ensuring the sustainability and resilience of forest ecosystems.
In this thesis, we focus on classifying dead trees using remote sensing
images obtained from the Sentinel 2 satellite and Vegetation Indices
(VIS). We initially extracted three VIs: the Normalised Difference Vegetation
Index (NDVI), Enhanced Vegetation Index (EVI2), and the Soil
Adjusted Vegetation Index. Subsequently, we selected three prominent
classification algorithms for Machine Learning (ML): Decision Tree (DT),
Random Forest (RF), and Support Vector Machine (SVM). Additionally,
we compared their performances with the Deep Learning Neural Network
(DNN). Notably, the Random Forest algorithm attained the highest
accuracy in dead tree classification, achieving an accuracy of 0.73 = La détection des arbres morts basée sur l’intelligence artificielle et la
télédétection revêt une grande importance pour une surveillance efficace
et évolutive, la détection précoce des perturbations, l’évaluation de la
santé des écosystèmes, la gestion des ressources et la planification de
la conservation. Elle permet des interventions rapides, améliore les
pratiques de gestion forestière et contribue aux efforts de surveillance
environnementale, garantissant ainsi la durabilité et la résilience des
écosystèmes forestiers.
Dans ce mémoire, nous avons classifié les arbres morts en utilisant
des images de télédétection acquises à partir du satellite Sentinel 2
et desindices de végétation (VIS). Nous avons tout d’abord extrait
trois indices de végétation, à savoir l’indice de végétation par différence
normalisée (NDVI), l’indice de végétation amélioré (EVI2) et l’indice
devégétation ajusté au sol. Ensuite, nous avons sélectionné trois des
principaux algorithmes d’apprentissage automatique pour effectuer la
classificationarbres de décision (DT), les forêts aléatoires (RF), les machines
à vecteurs de support (SVM) en plus du réseau de neurons (DNN).
Les résultats ont montré que l’algorithme de forêt aléatoire a obtenu
la meilleure précision dans la classification des arbres morts, atteignant
une précision de 0,73.
|
Côte titre : |
MAI/0755 |
En ligne : |
https://drive.google.com/file/d/1pK3ThW0ig-RHAQLEFvJNh0fkEU6fBSzZ/view?usp=drive [...] |
Format de la ressource électronique : |
pdf |
Dead Trees Detection Based on Machine Learning and Remote Sensing [texte imprimé] / Manelle Benarbia, Auteur ; Nabila Chergui, Auteur . - [S.l.] : Setif:UFA, 2023 . - 1 vol (51 f .) ; 29 cm. Langues : Anglais ( eng)
Catégories : |
Thèses & Mémoires:Informatique
|
Mots-clés : |
Dead tree detection Artificial Intelligence Machine
Learning Deep Learning Remote Sensing Vegetation Indices Classification Détection des arbres morts Intelligence Artificielle Apprentissage
Automatique Apprentissage Approfondu télédétection Indices de Vegetations |
Index. décimale : |
004 - Informatique |
Résumé : |
Dead tree detection utilising machine learning and remote sensing
holds significance in efficient and scalable monitoring, early disturbance
detection, assessing ecosystem health, managing resources, and planning
conservation efforts. This approach facilitates timely interventions, enhances
forest management practices, and contributes to environmental
monitoring, ensuring the sustainability and resilience of forest ecosystems.
In this thesis, we focus on classifying dead trees using remote sensing
images obtained from the Sentinel 2 satellite and Vegetation Indices
(VIS). We initially extracted three VIs: the Normalised Difference Vegetation
Index (NDVI), Enhanced Vegetation Index (EVI2), and the Soil
Adjusted Vegetation Index. Subsequently, we selected three prominent
classification algorithms for Machine Learning (ML): Decision Tree (DT),
Random Forest (RF), and Support Vector Machine (SVM). Additionally,
we compared their performances with the Deep Learning Neural Network
(DNN). Notably, the Random Forest algorithm attained the highest
accuracy in dead tree classification, achieving an accuracy of 0.73 = La détection des arbres morts basée sur l’intelligence artificielle et la
télédétection revêt une grande importance pour une surveillance efficace
et évolutive, la détection précoce des perturbations, l’évaluation de la
santé des écosystèmes, la gestion des ressources et la planification de
la conservation. Elle permet des interventions rapides, améliore les
pratiques de gestion forestière et contribue aux efforts de surveillance
environnementale, garantissant ainsi la durabilité et la résilience des
écosystèmes forestiers.
Dans ce mémoire, nous avons classifié les arbres morts en utilisant
des images de télédétection acquises à partir du satellite Sentinel 2
et desindices de végétation (VIS). Nous avons tout d’abord extrait
trois indices de végétation, à savoir l’indice de végétation par différence
normalisée (NDVI), l’indice de végétation amélioré (EVI2) et l’indice
devégétation ajusté au sol. Ensuite, nous avons sélectionné trois des
principaux algorithmes d’apprentissage automatique pour effectuer la
classificationarbres de décision (DT), les forêts aléatoires (RF), les machines
à vecteurs de support (SVM) en plus du réseau de neurons (DNN).
Les résultats ont montré que l’algorithme de forêt aléatoire a obtenu
la meilleure précision dans la classification des arbres morts, atteignant
une précision de 0,73.
|
Côte titre : |
MAI/0755 |
En ligne : |
https://drive.google.com/file/d/1pK3ThW0ig-RHAQLEFvJNh0fkEU6fBSzZ/view?usp=drive [...] |
Format de la ressource électronique : |
pdf |
|