University Sétif 1 FERHAT ABBAS Faculty of Sciences
Détail de l'auteur
Auteur Ibrahim el Khallil Haddad |
Documents disponibles écrits par cet auteur



Energy efficiency routing protocol based on optimization of trajectory mobile sink in hierarchical wireless sensor networks / Wassim Bekhouche
Titre : Energy efficiency routing protocol based on optimization of trajectory mobile sink in hierarchical wireless sensor networks Type de document : texte imprimé Auteurs : Wassim Bekhouche, Auteur ; Ibrahim el Khallil Haddad ; Riad Aouabed, Directeur de thèse Editeur : Setif:UFA Année de publication : 2024 Importance : 1 vol (54 f .) Format : 29 cm Langues : Anglais (eng) Catégories : Thèses & Mémoires:Informatique Mots-clés : Wireless sensor network
Hot-Spot
Mobile sink
Center of Gravity
Rendezvous Points
Ant colony optimization.Index. décimale : 004 - Informatique Résumé :
This research addresses the problem of energy efficiency in hierarchical wireless sensor networks (WSNs) with a mobile base station (sink). It focuses on optimizing the trajectory of the mobile sink to ensure better network coverage. After an introduction to wireless networks and their applications, we present in detail the mobile sinks, their different types of mobility, and the various path optimization techniques used in this type of protocols. Based on these studies, a routing protocol has been proposed that is based on optimized Rendezvous Points, and the use of the ACO (Ant Colony Optimization) algorithm to generate the path followed by the mobile sink. Simulation scenarios have been conducted to confirm the efficiency and validity of our protocol.Note de contenu : Sommaire
List of tables XII General Introduction 1
Chapter 1 Introduction to Wireless Sensors Networks 2
1 Introduction .............................................................................................................. 2
2 Sensor Node .............................................................................................................. 4
2.1 Components of a Sensor Node ..................................................................... 4
2.2 Methods for placing sensor nodes in WSN .................................................. 5
2.2.1 Random placement .......................................................................... 5
2.2.2 Deterministic placement .................................................................. 5
3 WSNs Architecture .................................................................................................... 5
3.1 Protocol stack for wireless sensor networks ............................................... 5
3.1.1 Physical layer..................................................................................... 6
3.1.2 Data Link layer .................................................................................. 6
3.1.3 Network layer ................................................................................... 7
3.1.4 Transport layer .................................................................................. 7
3.1.5 Application layer ............................................................................... 7
3.1.6 Management Planes Across Each Layer ........................................... 8
4 Application of Wireless Sensor Networks.................................................................. 9
4.1 Military Applications ..................................................................................... 9
4.2 Environmental monitoring ............................................................................ 10
4.3 Healthcare and Medical Applications ........................................................... 11
4.4 Home Applications ........................................................................................ 12
5 Network Topology ..................................................................................................... 12
5.1 Flat Architecture ............................................................................................ 12
5.2 Clustering Approach ..................................................................................... 13
6 Cluster Head Selection Algorithms ............................................................................ 14
6.1 Lowest ID Clustering Algorithm ..................................................................... 14
6.2 Highest Connectivity Clustering Algorithm ................................................... 14
6.3 Weighted Clustering Algorithm ..................................................................... 14
7 Intra-cluster routing ................................................................................................... 15
8 Inter-Cluster Routing ................................................................................................. 15
9 Classification Of Routing Protocols ............................................................................ 16
10 Hierarchical Routing Protocols ................................................................................ 17
10.1 LEACH Protocol ............................................................................................ 17
10.2 Advantages of LEACH .................................................................................. 19
10.3 Disadvantages of LEACH .............................................................................. 20
11 Conclusion ................................................................................................................ 21
Chapter 2 Mobile Sink in WSNs 22
1 Introduction ............................................................................................................... 22
2 The Hot-Spot Problem in Static Sink .......................................................................... 22
2.1 Causes of The Hot-Spot Problem .................................................................. 22
2.2 Impacts of The Hot-Spot problem on network performance ....................... 23
3 Mobile Sink vs Static Sink ........................................................................................... 24
4 Mobile Sink ................................................................................................................ 25
4.1 Random Mobility ........................................................................................... 25
4.2 Fixed Mobility ................................................................................................ 26
4.3 Controlled Mobility ....................................................................................... 27
5 Advantages of Mobile Sinks ....................................................................................... 27
6 Challenges of using Mobile sinks ............................................................................... 28
7 Mobile Sink Path Optimization Techniques .................................................................... 28
7.1 Bio-inspired Techniques ...................................................................................... 28
7.1.1 Ant Colony Optimization ......................................................................... 28
7.1.2 Fireefly Algorithm .................................................................................... 29
7.1.3 Genetic Algorithms (GA) ......................................................................... 29
7.1.4 Particle Swarm Optimization (PSO) ....................................................... 29
7.2 Cluster-based Protocol.......................................................................................... 29
7.2.1 Energy-Efficient Mobile Sink Routing Algorithm (EEMSRA) ............. 29
7.2.2 Advantages of EEMSRA ..................................................................... 29
7.2.3 Drawbacks of EEMSRA ...................................................................... 30
7.3 Area-based Protocol ...................................................................................... 30
7.3.1 Line-based Data Dissemination (LBDD) ............................................ 30
7.3.2 Advantages of LBDD .......................................................................... 31
7.3.3 Drawbacks of LBDD ........................................................................... 31
7.4 Tree-Based Protocol ...................................................................................... 31
7.4.1 SPT-DGA Algorithm ........................................................................... 32
7.4.2 Advantages and Drawbacks of SPT-DGA .......................................... 32
8 Conclusion ................................................................................................................... 32
Chapter 3 Rendezvouz Points Optimization Protocol (OPT_RDV) 33
1 Introduction .............................................................................................................. 33
2 Overall description ..................................................................................................... 33
2.1 Assumptions .................................................................................................. 33
2.2 Initialization ................................................................................................... 33
2.3 Routing data to the Sink ....................................................................................... 38
2.3.1 Intra-cluster routing ................................................................................ 39
2.3.2 Inter-cluster routing ................................................................................ 39
2.3.3 Energy Consumption Model ................................................................... 41
3 Simulation And Results ....................................................................................................... 42
3.1 The distance traveled by mobile sink .................................................. 43
3.2 Network latency ................................................................................... 43
3.3 Energy Efficiency .................................................................................. 44
3.4 Successfully delivered packets (Throughput) ...................................... 45
4 Conclusion.................................................................................................................... 47Côte titre : MAI/0839 Energy efficiency routing protocol based on optimization of trajectory mobile sink in hierarchical wireless sensor networks [texte imprimé] / Wassim Bekhouche, Auteur ; Ibrahim el Khallil Haddad ; Riad Aouabed, Directeur de thèse . - [S.l.] : Setif:UFA, 2024 . - 1 vol (54 f .) ; 29 cm.
Langues : Anglais (eng)
Catégories : Thèses & Mémoires:Informatique Mots-clés : Wireless sensor network
Hot-Spot
Mobile sink
Center of Gravity
Rendezvous Points
Ant colony optimization.Index. décimale : 004 - Informatique Résumé :
This research addresses the problem of energy efficiency in hierarchical wireless sensor networks (WSNs) with a mobile base station (sink). It focuses on optimizing the trajectory of the mobile sink to ensure better network coverage. After an introduction to wireless networks and their applications, we present in detail the mobile sinks, their different types of mobility, and the various path optimization techniques used in this type of protocols. Based on these studies, a routing protocol has been proposed that is based on optimized Rendezvous Points, and the use of the ACO (Ant Colony Optimization) algorithm to generate the path followed by the mobile sink. Simulation scenarios have been conducted to confirm the efficiency and validity of our protocol.Note de contenu : Sommaire
List of tables XII General Introduction 1
Chapter 1 Introduction to Wireless Sensors Networks 2
1 Introduction .............................................................................................................. 2
2 Sensor Node .............................................................................................................. 4
2.1 Components of a Sensor Node ..................................................................... 4
2.2 Methods for placing sensor nodes in WSN .................................................. 5
2.2.1 Random placement .......................................................................... 5
2.2.2 Deterministic placement .................................................................. 5
3 WSNs Architecture .................................................................................................... 5
3.1 Protocol stack for wireless sensor networks ............................................... 5
3.1.1 Physical layer..................................................................................... 6
3.1.2 Data Link layer .................................................................................. 6
3.1.3 Network layer ................................................................................... 7
3.1.4 Transport layer .................................................................................. 7
3.1.5 Application layer ............................................................................... 7
3.1.6 Management Planes Across Each Layer ........................................... 8
4 Application of Wireless Sensor Networks.................................................................. 9
4.1 Military Applications ..................................................................................... 9
4.2 Environmental monitoring ............................................................................ 10
4.3 Healthcare and Medical Applications ........................................................... 11
4.4 Home Applications ........................................................................................ 12
5 Network Topology ..................................................................................................... 12
5.1 Flat Architecture ............................................................................................ 12
5.2 Clustering Approach ..................................................................................... 13
6 Cluster Head Selection Algorithms ............................................................................ 14
6.1 Lowest ID Clustering Algorithm ..................................................................... 14
6.2 Highest Connectivity Clustering Algorithm ................................................... 14
6.3 Weighted Clustering Algorithm ..................................................................... 14
7 Intra-cluster routing ................................................................................................... 15
8 Inter-Cluster Routing ................................................................................................. 15
9 Classification Of Routing Protocols ............................................................................ 16
10 Hierarchical Routing Protocols ................................................................................ 17
10.1 LEACH Protocol ............................................................................................ 17
10.2 Advantages of LEACH .................................................................................. 19
10.3 Disadvantages of LEACH .............................................................................. 20
11 Conclusion ................................................................................................................ 21
Chapter 2 Mobile Sink in WSNs 22
1 Introduction ............................................................................................................... 22
2 The Hot-Spot Problem in Static Sink .......................................................................... 22
2.1 Causes of The Hot-Spot Problem .................................................................. 22
2.2 Impacts of The Hot-Spot problem on network performance ....................... 23
3 Mobile Sink vs Static Sink ........................................................................................... 24
4 Mobile Sink ................................................................................................................ 25
4.1 Random Mobility ........................................................................................... 25
4.2 Fixed Mobility ................................................................................................ 26
4.3 Controlled Mobility ....................................................................................... 27
5 Advantages of Mobile Sinks ....................................................................................... 27
6 Challenges of using Mobile sinks ............................................................................... 28
7 Mobile Sink Path Optimization Techniques .................................................................... 28
7.1 Bio-inspired Techniques ...................................................................................... 28
7.1.1 Ant Colony Optimization ......................................................................... 28
7.1.2 Fireefly Algorithm .................................................................................... 29
7.1.3 Genetic Algorithms (GA) ......................................................................... 29
7.1.4 Particle Swarm Optimization (PSO) ....................................................... 29
7.2 Cluster-based Protocol.......................................................................................... 29
7.2.1 Energy-Efficient Mobile Sink Routing Algorithm (EEMSRA) ............. 29
7.2.2 Advantages of EEMSRA ..................................................................... 29
7.2.3 Drawbacks of EEMSRA ...................................................................... 30
7.3 Area-based Protocol ...................................................................................... 30
7.3.1 Line-based Data Dissemination (LBDD) ............................................ 30
7.3.2 Advantages of LBDD .......................................................................... 31
7.3.3 Drawbacks of LBDD ........................................................................... 31
7.4 Tree-Based Protocol ...................................................................................... 31
7.4.1 SPT-DGA Algorithm ........................................................................... 32
7.4.2 Advantages and Drawbacks of SPT-DGA .......................................... 32
8 Conclusion ................................................................................................................... 32
Chapter 3 Rendezvouz Points Optimization Protocol (OPT_RDV) 33
1 Introduction .............................................................................................................. 33
2 Overall description ..................................................................................................... 33
2.1 Assumptions .................................................................................................. 33
2.2 Initialization ................................................................................................... 33
2.3 Routing data to the Sink ....................................................................................... 38
2.3.1 Intra-cluster routing ................................................................................ 39
2.3.2 Inter-cluster routing ................................................................................ 39
2.3.3 Energy Consumption Model ................................................................... 41
3 Simulation And Results ....................................................................................................... 42
3.1 The distance traveled by mobile sink .................................................. 43
3.2 Network latency ................................................................................... 43
3.3 Energy Efficiency .................................................................................. 44
3.4 Successfully delivered packets (Throughput) ...................................... 45
4 Conclusion.................................................................................................................... 47Côte titre : MAI/0839 Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité MAI/0839 MAI/0839 Mémoire Bibliothéque des sciences Anglais Disponible
DisponibleSynthesis and characterization of mixed oxides: experimental and theoretical study of their photocatalytic activity / Sarra Bouriachi
Titre : Synthesis and characterization of mixed oxides: experimental and theoretical study of their photocatalytic activity Type de document : document électronique Auteurs : Sarra Bouriachi, Auteur ; Ibrahim el Khallil Haddad, Directeur de thèse Editeur : Sétif:UFA1 Année de publication : 2024 Importance : 1 vol (112 f.) Langues : Anglais (eng) Catégories : Thèses & Mémoires:Physique Mots-clés : LaFeO3
Nanopores
Adsorption
Photocatalysis
Kinetic models
DFTIndex. décimale : 530 - Physique Résumé :
In this study, LaFeO3 powders with crucial catalytic and photocatalytic performance were successfully prepared through the sol-gel method using chloride and ni
trate salts. The influence of the used precursor on the crystallinity, morphology, specific surface area, and optical properties was investigated. TGA and XRD patterns confirmed the formation of the LaFeO3 orthorhombic perovskite phase (Pnma, #62). SEM images highlighted a significant effect of the precursor type on the surface morphology of the synthesized nanoparticles. The obtained band gap varies between 2.19 - 2.27 eV. The kinetic and isotherm adsorption studies revealed that the adsorption of MB molecules on LaFeO3 nanoparticles fitted well with the pseudo-second-order and Freundlich models. Moreover, the thermodynamic study demonstrated that the adsorption of MB on the LaFeO3 samples is spontaneous, exothermic, and more favorable at low temperatures while the magnitude of enthalpy changes energies suggested a physisorption. Hence, LaFeO3 samples prepared with chloride salts are expected to show high photodegradation efficiency of MB dye. In addition, our study was completed by the theoretical investigation, using DFT within GGA+U, of the Bulk and surface properties of LaFeO3. A perfect agreement is found between the experimental results and the theoretical ones.Note de contenu :
Sommaire
Chapter I: Literature Review
I.1 Organic Dyes 8
I.2 Wastewater Treatment Methods 9
I.2.1 Adsorption 10
I.2.1.1 Types of Adsorption 11
1.2.2 Photocatalysis 11
I.2.2.1 Photocatalysis Mechanism 12
I.2.2.2 Types of Photocatalysis 13
I.3 Perovskite Type Oxide 14
I.3.1 Structure Distortion 15
I.3.2 LaFeO3 Perovskite 16
I.3.2.1 Crystal Structure 16
I.3.2.2 Magnetic and Electronic Structure 17
I.3.2.3 Surface Studies on LaFeO3 19
References 21
Chapter II: Experimental Techniques
II.1 Sol-gel process 27
II.1.1 Basic Reactions in the Sol-Gel Process 27
II.1.2 Factors Influencing Sol-Gel Process 28
II.2 Characterization Techniques 29
II.2.1 X-Ray Diffraction (XRD) 30
II.2.2 Thermogravimetric Analysis (TGA) 31
II.2.3 Scanning Electron Microscopy (SEM) 33
II.2.4 Brunauer-Emmett-Teller Analysis (BET) 34
II.2.5 Fourier Transform Infrared spectroscopy (FTIR) 35
II.2.6 UV-Visible Spectroscopy 36
References 39
Chapter III: Theoretical Methods
III.1 The Schrodinger Equation 42
III.2 Hartree-Fock Approximation 43
III.3 Density Functional Theory 43
III.3.1 Hohenberg-Kohn Theorem 44
III.3.2 The Kohn-Sham Method 44
III.3.3 Exchange-Correlation Functional 45
III.3.3.1 The Local Density Approximation (LDA) 46
III.3.3.2 Generalized Gradient Approximation (GGA) 46
III.3.4 DFT+U 47
III.3.4.1 Hubbard Parameter 47
III.3.4.2 Spin Polarization 48
III.3.5 Self-consistent Procedure 48
III.3.6 Plane Waves Approach 49
III.3.7 Pseudopotential Concept 50
III.3.7.1 Norm Conserving Pseudopotential 51
III.3.7.2 Ultrasoft Pseudopotential 52
III.4 DFT Programs 52
III.4.1 Cambridge Sequential Total Energy Package Code (CASTEP) 52
III.4.2 Dmol3 Code 52
References 54
Chapter IV: Synthesis and Characterization of LaFeO3 Perovskite
IV.1 Experimental Procedure 57
IV.1.1 Chemicals 57
IV.1.2 Synthesis of LaFeO3 Based on Nitrate Salts 57
IV.1.3 Synthesis of LaFeO3 Based on Chloride Salts 58
IV.2 Results and Discussion 59
IV.2.1 Thermal Analysis (TGA and DTG) 59
IV.2.2 X-Ray Diffraction Analysis 61
IV.2.3 BET Analysis 64
IV.2.4 Powders Morphology and Composition 64
IV.2.5 Optical Properties 68
IV.2.6 FTIR Spectroscopy 69
References 71
Chapter V: Adsorption and Photocatalytic Activities
V.1 Experimental Procedure 75
V.1.1 Methylene Blue Preparation 75
V.1.2 Determination of the Optimum Adsorbent Mass 75
V.1.3 Point of Zero Charge (pHPZC) 76
V.1.4 Influence of the Contact Time 76
V.1.5 Adsorption Kinetics 76
V.1.6 Adsorption Isotherm 77
V.1.7 Adsorption Thermodynamics 78
V.1.8 Photocatalytic Study 78
V.2 Results and Discussion 79
V.2.1 Determination of the Optimum Adsorbent Mass 79
V.2.2 pHPZC Determination 79
V.2.3 Effect of the Contact Time 80
V.2.4 Adsorption Kinetics 81
V.2.5 Adsorption Isotherm 84
V.2.6 Adsorption Thermodynamics 85
V.2.7 Photocatalytic Activity Study 86
References 91
Chapter VI: DFT Calculation of LaFeO3 Properties and MB Adsorption
VI.1 Computational Details 95
VI.1.1 Computational Method for Bulk LaFeO3 95
VI.1.2 Computational Method for LaFeO3 Surface 96
VI.2 Results and Discussions 97
VI.2.1 Structural Properties 97
VI.2.2 Electronic and Magnetic Properties 98
VI.2.3 Surface Optimization 102
VI.2.4 Optimization of the Adsorbate 103
VI.2.5 Methylene Blue Adsorption on LaFeO3 Surface 104
References 107Côte titre : Dph/0310 Synthesis and characterization of mixed oxides: experimental and theoretical study of their photocatalytic activity [document électronique] / Sarra Bouriachi, Auteur ; Ibrahim el Khallil Haddad, Directeur de thèse . - [S.l.] : Sétif:UFA1, 2024 . - 1 vol (112 f.).
Langues : Anglais (eng)
Catégories : Thèses & Mémoires:Physique Mots-clés : LaFeO3
Nanopores
Adsorption
Photocatalysis
Kinetic models
DFTIndex. décimale : 530 - Physique Résumé :
In this study, LaFeO3 powders with crucial catalytic and photocatalytic performance were successfully prepared through the sol-gel method using chloride and ni
trate salts. The influence of the used precursor on the crystallinity, morphology, specific surface area, and optical properties was investigated. TGA and XRD patterns confirmed the formation of the LaFeO3 orthorhombic perovskite phase (Pnma, #62). SEM images highlighted a significant effect of the precursor type on the surface morphology of the synthesized nanoparticles. The obtained band gap varies between 2.19 - 2.27 eV. The kinetic and isotherm adsorption studies revealed that the adsorption of MB molecules on LaFeO3 nanoparticles fitted well with the pseudo-second-order and Freundlich models. Moreover, the thermodynamic study demonstrated that the adsorption of MB on the LaFeO3 samples is spontaneous, exothermic, and more favorable at low temperatures while the magnitude of enthalpy changes energies suggested a physisorption. Hence, LaFeO3 samples prepared with chloride salts are expected to show high photodegradation efficiency of MB dye. In addition, our study was completed by the theoretical investigation, using DFT within GGA+U, of the Bulk and surface properties of LaFeO3. A perfect agreement is found between the experimental results and the theoretical ones.Note de contenu :
Sommaire
Chapter I: Literature Review
I.1 Organic Dyes 8
I.2 Wastewater Treatment Methods 9
I.2.1 Adsorption 10
I.2.1.1 Types of Adsorption 11
1.2.2 Photocatalysis 11
I.2.2.1 Photocatalysis Mechanism 12
I.2.2.2 Types of Photocatalysis 13
I.3 Perovskite Type Oxide 14
I.3.1 Structure Distortion 15
I.3.2 LaFeO3 Perovskite 16
I.3.2.1 Crystal Structure 16
I.3.2.2 Magnetic and Electronic Structure 17
I.3.2.3 Surface Studies on LaFeO3 19
References 21
Chapter II: Experimental Techniques
II.1 Sol-gel process 27
II.1.1 Basic Reactions in the Sol-Gel Process 27
II.1.2 Factors Influencing Sol-Gel Process 28
II.2 Characterization Techniques 29
II.2.1 X-Ray Diffraction (XRD) 30
II.2.2 Thermogravimetric Analysis (TGA) 31
II.2.3 Scanning Electron Microscopy (SEM) 33
II.2.4 Brunauer-Emmett-Teller Analysis (BET) 34
II.2.5 Fourier Transform Infrared spectroscopy (FTIR) 35
II.2.6 UV-Visible Spectroscopy 36
References 39
Chapter III: Theoretical Methods
III.1 The Schrodinger Equation 42
III.2 Hartree-Fock Approximation 43
III.3 Density Functional Theory 43
III.3.1 Hohenberg-Kohn Theorem 44
III.3.2 The Kohn-Sham Method 44
III.3.3 Exchange-Correlation Functional 45
III.3.3.1 The Local Density Approximation (LDA) 46
III.3.3.2 Generalized Gradient Approximation (GGA) 46
III.3.4 DFT+U 47
III.3.4.1 Hubbard Parameter 47
III.3.4.2 Spin Polarization 48
III.3.5 Self-consistent Procedure 48
III.3.6 Plane Waves Approach 49
III.3.7 Pseudopotential Concept 50
III.3.7.1 Norm Conserving Pseudopotential 51
III.3.7.2 Ultrasoft Pseudopotential 52
III.4 DFT Programs 52
III.4.1 Cambridge Sequential Total Energy Package Code (CASTEP) 52
III.4.2 Dmol3 Code 52
References 54
Chapter IV: Synthesis and Characterization of LaFeO3 Perovskite
IV.1 Experimental Procedure 57
IV.1.1 Chemicals 57
IV.1.2 Synthesis of LaFeO3 Based on Nitrate Salts 57
IV.1.3 Synthesis of LaFeO3 Based on Chloride Salts 58
IV.2 Results and Discussion 59
IV.2.1 Thermal Analysis (TGA and DTG) 59
IV.2.2 X-Ray Diffraction Analysis 61
IV.2.3 BET Analysis 64
IV.2.4 Powders Morphology and Composition 64
IV.2.5 Optical Properties 68
IV.2.6 FTIR Spectroscopy 69
References 71
Chapter V: Adsorption and Photocatalytic Activities
V.1 Experimental Procedure 75
V.1.1 Methylene Blue Preparation 75
V.1.2 Determination of the Optimum Adsorbent Mass 75
V.1.3 Point of Zero Charge (pHPZC) 76
V.1.4 Influence of the Contact Time 76
V.1.5 Adsorption Kinetics 76
V.1.6 Adsorption Isotherm 77
V.1.7 Adsorption Thermodynamics 78
V.1.8 Photocatalytic Study 78
V.2 Results and Discussion 79
V.2.1 Determination of the Optimum Adsorbent Mass 79
V.2.2 pHPZC Determination 79
V.2.3 Effect of the Contact Time 80
V.2.4 Adsorption Kinetics 81
V.2.5 Adsorption Isotherm 84
V.2.6 Adsorption Thermodynamics 85
V.2.7 Photocatalytic Activity Study 86
References 91
Chapter VI: DFT Calculation of LaFeO3 Properties and MB Adsorption
VI.1 Computational Details 95
VI.1.1 Computational Method for Bulk LaFeO3 95
VI.1.2 Computational Method for LaFeO3 Surface 96
VI.2 Results and Discussions 97
VI.2.1 Structural Properties 97
VI.2.2 Electronic and Magnetic Properties 98
VI.2.3 Surface Optimization 102
VI.2.4 Optimization of the Adsorbate 103
VI.2.5 Methylene Blue Adsorption on LaFeO3 Surface 104
References 107Côte titre : Dph/0310 Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité Dph/0310 Dph/0310 Thèse Bibliothéque des sciences Anglais Disponible
Disponible