University Sétif 1 FERHAT ABBAS Faculty of Sciences
Détail de l'auteur
Auteur Ichrak Messah |
Documents disponibles écrits par cet auteur



Titre : The minimum weight dominating set (MWDS) problem in massive graphs Type de document : texte imprimé Auteurs : Ichrak Messah, Auteur ; Isra Lamari ; Samir Balbal, Directeur de thèse Editeur : Setif:UFA Année de publication : 2024 Importance : 1 vol (64 f .) Format : 29 cm Langues : Anglais (eng) Catégories : Thèses & Mémoires:Informatique Mots-clés : Graph
Optimization
Heuristic methods
Metaheuristics
Minimum weight dominating set
Deep optimization
Massive graph
Greedy algorithmIndex. décimale : 004 - Informatique Résumé :
An important generalization of the Minimum Dominating Set (MDS) problem which is known to be NP-hard with extensive applications; The Minimum Weight Dominating Set (MWDS) problem is the minimum number of vertices in the dominating set with minimum total weight. In general we staged a dominant set is generated by a greedy algorithm, Extensive experiments based on five popular benchmarks of different scales are carried out to evaluate the proposed algorithm. Compared to five state-of-the-art heuristic algorithms, DeepOpt-MWDS performs better on random and classic benchmarks and obtains the best solutions on almost all massive graphs. So, we adapt the proposed general framework DeepOpt to NP-hard problem to verify its generality and achieve good performance.Note de contenu : Sommaire
Dedicates ......................................................................................... Erreur ! Signet non défini.
Thanks ..................................................................................................................................... IV
Résume ..................................................................................................................................... V
Abstract ................................................................................................................................... VI
General Introduction ................................................................................................................ 11
CHAPTER 01 Graph theory and dominant set ........................................................................ 13
1.1 Introduction .................................................................................................................... 14
1.2 Graph theory ................................................................................................................... 14
1.2.1 Basics ...................................................................................................................... 14
1.2.2 Terminologies ........................................................................................................ 16
1.3 Structural representation of graphs ............................................................................... 17
1.3.1 Representation by Matrix ........................................................................................ 18
1.3.2 Representation by list ............................................................................................. 20
1.4 Dominating sets ............................................................................................................. 21
1.4.1 Minimal dominating set (MDS) ............................................................................. 21
1.4.2 Minimal weight dominating set (MWDS) ............................................................. 21
1.5 Conclusion ..................................................................................................................... 22
CHAPTER 02 Problem solving method .................................................................................. 24
2.1 Introduction ................................................................................................................... 25 2.2 The Optimization Combination Problem………………………………………………... 25
2.2.1 Complex elements .................................................................................................. 26
2.3.2 Complexity Classes ................................................................................................ 28
2.4 Optimization methods ................................................................................................... 31
2.4.1 Classification of methods ....................................................................................... 31 2.4.1.1 Exact methods .............................................................................................. 32
2.4.1.2 Approximate methods .................................................................................. 34
2.5 Conclusion ..................................................................................................................... 40
CHAPTER 03 Contributions and results ................................................................................. 41
3.1 Introduction .................................................................................................................... 42
3.2 Contribution .................................................................................................................. 42
3.2.1 Minimal Dominating Set (MDS) ............................................................................ 42
3.2.1.2 Example that exemplifies MDS .......................................................................... 44
3.2.2 Minimal Weight Dominating Set (MWDS) ............................................................ 46
3.3 Data set ........................................................................................................................... 48
3.3.1 The benchmarks ...................................................................................................... 48
3.3.2 Presentation of instance .......................................................................................... 49
3.4 Development environment ............................................................................................. 51
3.5 Evaluation of our heuristic evaluation for MWDS and MDS ........................................ 51
3.5.1 Evaluation of our MWDS and MDS approach for (The benchmark) .................... 51
3.6 DISCUSSION ............................................................................................................... 58
3.7 Conclusion ..................................................................................................................... 59
General Conclusion .................................................................................................................. 60Côte titre : MAI/0902 The minimum weight dominating set (MWDS) problem in massive graphs [texte imprimé] / Ichrak Messah, Auteur ; Isra Lamari ; Samir Balbal, Directeur de thèse . - [S.l.] : Setif:UFA, 2024 . - 1 vol (64 f .) ; 29 cm.
Langues : Anglais (eng)
Catégories : Thèses & Mémoires:Informatique Mots-clés : Graph
Optimization
Heuristic methods
Metaheuristics
Minimum weight dominating set
Deep optimization
Massive graph
Greedy algorithmIndex. décimale : 004 - Informatique Résumé :
An important generalization of the Minimum Dominating Set (MDS) problem which is known to be NP-hard with extensive applications; The Minimum Weight Dominating Set (MWDS) problem is the minimum number of vertices in the dominating set with minimum total weight. In general we staged a dominant set is generated by a greedy algorithm, Extensive experiments based on five popular benchmarks of different scales are carried out to evaluate the proposed algorithm. Compared to five state-of-the-art heuristic algorithms, DeepOpt-MWDS performs better on random and classic benchmarks and obtains the best solutions on almost all massive graphs. So, we adapt the proposed general framework DeepOpt to NP-hard problem to verify its generality and achieve good performance.Note de contenu : Sommaire
Dedicates ......................................................................................... Erreur ! Signet non défini.
Thanks ..................................................................................................................................... IV
Résume ..................................................................................................................................... V
Abstract ................................................................................................................................... VI
General Introduction ................................................................................................................ 11
CHAPTER 01 Graph theory and dominant set ........................................................................ 13
1.1 Introduction .................................................................................................................... 14
1.2 Graph theory ................................................................................................................... 14
1.2.1 Basics ...................................................................................................................... 14
1.2.2 Terminologies ........................................................................................................ 16
1.3 Structural representation of graphs ............................................................................... 17
1.3.1 Representation by Matrix ........................................................................................ 18
1.3.2 Representation by list ............................................................................................. 20
1.4 Dominating sets ............................................................................................................. 21
1.4.1 Minimal dominating set (MDS) ............................................................................. 21
1.4.2 Minimal weight dominating set (MWDS) ............................................................. 21
1.5 Conclusion ..................................................................................................................... 22
CHAPTER 02 Problem solving method .................................................................................. 24
2.1 Introduction ................................................................................................................... 25 2.2 The Optimization Combination Problem………………………………………………... 25
2.2.1 Complex elements .................................................................................................. 26
2.3.2 Complexity Classes ................................................................................................ 28
2.4 Optimization methods ................................................................................................... 31
2.4.1 Classification of methods ....................................................................................... 31 2.4.1.1 Exact methods .............................................................................................. 32
2.4.1.2 Approximate methods .................................................................................. 34
2.5 Conclusion ..................................................................................................................... 40
CHAPTER 03 Contributions and results ................................................................................. 41
3.1 Introduction .................................................................................................................... 42
3.2 Contribution .................................................................................................................. 42
3.2.1 Minimal Dominating Set (MDS) ............................................................................ 42
3.2.1.2 Example that exemplifies MDS .......................................................................... 44
3.2.2 Minimal Weight Dominating Set (MWDS) ............................................................ 46
3.3 Data set ........................................................................................................................... 48
3.3.1 The benchmarks ...................................................................................................... 48
3.3.2 Presentation of instance .......................................................................................... 49
3.4 Development environment ............................................................................................. 51
3.5 Evaluation of our heuristic evaluation for MWDS and MDS ........................................ 51
3.5.1 Evaluation of our MWDS and MDS approach for (The benchmark) .................... 51
3.6 DISCUSSION ............................................................................................................... 58
3.7 Conclusion ..................................................................................................................... 59
General Conclusion .................................................................................................................. 60Côte titre : MAI/0902 Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité MAI/0902 MAI/0902 Mémoire Bibliothéque des sciences Anglais Disponible
Disponible