Titre : |
Improving IoT communication quality for more robust systems |
Type de document : |
texte imprimé |
Auteurs : |
Samah lydia Bahar, Auteur ; Anfel Hefassa ; Aissaoui, mohammed, Directeur de thèse |
Editeur : |
Setif:UFA |
Année de publication : |
2024 |
Importance : |
1 vol (72 f .) |
Format : |
29 cm |
Langues : |
Anglais (eng) |
Catégories : |
Thèses & Mémoires:Informatique
|
Mots-clés : |
IoT
SDN
TDMA
SDTMP
Agriculture |
Index. décimale : |
004 - Informatique |
Résumé : |
The Internet of Things (IoT) refers to the interconnection of physical objects equipped
with sensors and software, allowing for collecting and exchanging data found in various
domains, such as healthcare, agriculture, industry, and home automation. This innovation
has revolutionized agriculture by introducing smart technologies that optimize production
and resource management. Farmers can monitor real-time soil conditions, humidity levels,
temperature, and crop growth through connected sensors, enabling precise and efficient
interventions. However, network density and traffic load are considered significant factors
that may negatively affect our system and its infrastructure, as achievable throughputs
in such networks are particularly limited when the number of members and clusters decreases.
It is even considered that the transmission delay from a source to a destination
influences network efficiency by leaving unused time slots empty, without any data to
send. Also, ensuring that the packets arrive is one of the most crucial conditions. Thus,
managing all these metrics and improving communication quality in the IoT is essential to
ensure system reliability and robustness. Historically, this endeavor to address challenges
has led to numerous research studies, mainly focused on improving throughput, reducing
delays and dropped packets. Consequently, thanks to various techniques such as optimizing
communication protocols, using new modulation technologies, and designing smart
mesh networks, IoT connectivity is being strengthened. Integrating dynamic adaptation
algorithms and advanced mechanisms enables IoT systems to withstand challenging environments.
This thesis focuses on one of these protocols, the SDN-based Dynamic TDMA
MAC Protocol (SDTMP), aiming for its real integration into IoT applications.
Our initial work is mainly focused on designing an SDN controller that centralizes the
management and orchestration of our network, offering programmability, flexibility, and
traffic optimization. We also chose the MQTT protocol because of its lightweight and
bandwidth efficiency, making it ideal for reliable, real-time, low-latency communication.
In addition, we opted for LoRa technology, known for its long-range and low energy
consumption.
Therefore, we proposed and implemented this protocol, and simulations showed significant
reductions in delays and lost packets and an increase in throughput compared
with traditional TDMA. |
Note de contenu : |
Sommaire
List of Figures viii
List of Tables xi
General introduction 1
1 State of the art 3
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Internet of Things: Generality . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 The evolution of IoT architecture . . . . . . . . . . . . . . . . . . . 4
1.2.2 IoT Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 IoT Networks types . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 SDN (Software-Defined Networking) . . . . . . . . . . . . . . . . . . . . . 12
1.3.1 SDN architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.2 SDN advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4 Message Queuing Telemetry Transport . . . . . . . . . . . . . . . . . . . . 15
1.4.1 Publish/Subscribe Pattern . . . . . . . . . . . . . . . . . . . . . . . 16
1.4.2 MQTT Client and Broker . . . . . . . . . . . . . . . . . . . . . . . 16
1.4.3 MQTT Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4.4 MQTT QoS management . . . . . . . . . . . . . . . . . . . . . . . 17
1.5 IoT QoS techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5.1 Application and Transport layer techniques . . . . . . . . . . . . . 19
1.5.2 Network layer techniques . . . . . . . . . . . . . . . . . . . . . . . . 22
1.5.3 MAC layer techniques . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.5.4 Physical layer techniques . . . . . . . . . . . . . . . . . . . . . . . . 25
1.6 IoT Reliability Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.6.1 Packet Delivery Ratio . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.6.2 Outage probability . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.6.3 Channel busy ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.6.4 Packet inter-arrival time . . . . . . . . . . . . . . . . . . . . . . . . 28
1.6.5 End-to-end delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.6.6 Safety awareness range . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.6.7 Signature verification time . . . . . . . . . . . . . . . . . . . . . . . 29
1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2 The proposed solution 30
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3 The proposed system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.1 Data center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.2 Cluster-head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.3 Node members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4 Application and transport Layer . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5 Network layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.6 Mac Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.6.1 Overview of Time Division Multiple Access (TDMA) . . . . . . . . 34
2.6.2 Limitations of TDMA . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.6.3 Objectives of SDN-based Dynamic TDMA MAC Protocol (SDTMP) 35
2.6.4 SDN-based Dynamic TDMA MAC Protocol (SDTMP) . . . . . . 35
2.6.5 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.6.6 SDTMP Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.6.7 Step 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.6.8 Step 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.6.9 Step 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.7 Physical layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.8 Illustrative example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.8.1 Application and transport layer . . . . . . . . . . . . . . . . . . . . 44
2.8.2 Network layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.8.3 Mac layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.8.4 Physical layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.8.5 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.9 Simulations and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.9.1 Clusters by members . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.9.2 Members by Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 |
Côte titre : |
MAI/0915
|
Improving IoT communication quality for more robust systems [texte imprimé] / Samah lydia Bahar, Auteur ; Anfel Hefassa ; Aissaoui, mohammed, Directeur de thèse . - [S.l.] : Setif:UFA, 2024 . - 1 vol (72 f .) ; 29 cm. Langues : Anglais ( eng)
Catégories : |
Thèses & Mémoires:Informatique
|
Mots-clés : |
IoT
SDN
TDMA
SDTMP
Agriculture |
Index. décimale : |
004 - Informatique |
Résumé : |
The Internet of Things (IoT) refers to the interconnection of physical objects equipped
with sensors and software, allowing for collecting and exchanging data found in various
domains, such as healthcare, agriculture, industry, and home automation. This innovation
has revolutionized agriculture by introducing smart technologies that optimize production
and resource management. Farmers can monitor real-time soil conditions, humidity levels,
temperature, and crop growth through connected sensors, enabling precise and efficient
interventions. However, network density and traffic load are considered significant factors
that may negatively affect our system and its infrastructure, as achievable throughputs
in such networks are particularly limited when the number of members and clusters decreases.
It is even considered that the transmission delay from a source to a destination
influences network efficiency by leaving unused time slots empty, without any data to
send. Also, ensuring that the packets arrive is one of the most crucial conditions. Thus,
managing all these metrics and improving communication quality in the IoT is essential to
ensure system reliability and robustness. Historically, this endeavor to address challenges
has led to numerous research studies, mainly focused on improving throughput, reducing
delays and dropped packets. Consequently, thanks to various techniques such as optimizing
communication protocols, using new modulation technologies, and designing smart
mesh networks, IoT connectivity is being strengthened. Integrating dynamic adaptation
algorithms and advanced mechanisms enables IoT systems to withstand challenging environments.
This thesis focuses on one of these protocols, the SDN-based Dynamic TDMA
MAC Protocol (SDTMP), aiming for its real integration into IoT applications.
Our initial work is mainly focused on designing an SDN controller that centralizes the
management and orchestration of our network, offering programmability, flexibility, and
traffic optimization. We also chose the MQTT protocol because of its lightweight and
bandwidth efficiency, making it ideal for reliable, real-time, low-latency communication.
In addition, we opted for LoRa technology, known for its long-range and low energy
consumption.
Therefore, we proposed and implemented this protocol, and simulations showed significant
reductions in delays and lost packets and an increase in throughput compared
with traditional TDMA. |
Note de contenu : |
Sommaire
List of Figures viii
List of Tables xi
General introduction 1
1 State of the art 3
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Internet of Things: Generality . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 The evolution of IoT architecture . . . . . . . . . . . . . . . . . . . 4
1.2.2 IoT Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 IoT Networks types . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 SDN (Software-Defined Networking) . . . . . . . . . . . . . . . . . . . . . 12
1.3.1 SDN architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.2 SDN advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4 Message Queuing Telemetry Transport . . . . . . . . . . . . . . . . . . . . 15
1.4.1 Publish/Subscribe Pattern . . . . . . . . . . . . . . . . . . . . . . . 16
1.4.2 MQTT Client and Broker . . . . . . . . . . . . . . . . . . . . . . . 16
1.4.3 MQTT Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4.4 MQTT QoS management . . . . . . . . . . . . . . . . . . . . . . . 17
1.5 IoT QoS techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5.1 Application and Transport layer techniques . . . . . . . . . . . . . 19
1.5.2 Network layer techniques . . . . . . . . . . . . . . . . . . . . . . . . 22
1.5.3 MAC layer techniques . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.5.4 Physical layer techniques . . . . . . . . . . . . . . . . . . . . . . . . 25
1.6 IoT Reliability Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.6.1 Packet Delivery Ratio . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.6.2 Outage probability . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.6.3 Channel busy ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.6.4 Packet inter-arrival time . . . . . . . . . . . . . . . . . . . . . . . . 28
1.6.5 End-to-end delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.6.6 Safety awareness range . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.6.7 Signature verification time . . . . . . . . . . . . . . . . . . . . . . . 29
1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2 The proposed solution 30
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3 The proposed system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.1 Data center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.2 Cluster-head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.3 Node members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4 Application and transport Layer . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5 Network layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.6 Mac Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.6.1 Overview of Time Division Multiple Access (TDMA) . . . . . . . . 34
2.6.2 Limitations of TDMA . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.6.3 Objectives of SDN-based Dynamic TDMA MAC Protocol (SDTMP) 35
2.6.4 SDN-based Dynamic TDMA MAC Protocol (SDTMP) . . . . . . 35
2.6.5 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.6.6 SDTMP Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.6.7 Step 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.6.8 Step 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.6.9 Step 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.7 Physical layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.8 Illustrative example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.8.1 Application and transport layer . . . . . . . . . . . . . . . . . . . . 44
2.8.2 Network layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.8.3 Mac layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.8.4 Physical layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.8.5 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.9 Simulations and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.9.1 Clusters by members . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.9.2 Members by Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 |
Côte titre : |
MAI/0915
|
|