University Sétif 1 FERHAT ABBAS Faculty of Sciences
Détail de l'auteur
Auteur Chems Zerguine |
Documents disponibles écrits par cet auteur



Blockchain-based deep learning to improve the security of the Industrial Internet of Things / Aya Bendjedi
Titre : Blockchain-based deep learning to improve the security of the Industrial Internet of Things Type de document : texte imprimé Auteurs : Aya Bendjedi, Auteur ; Chems Zerguine ; Goudjil, Lakhdar, Directeur de thèse Editeur : Setif:UFA Année de publication : 2024 Importance : 1 vol (99 f .) Format : 29 cm Langues : Anglais (eng) Catégories : Thèses & Mémoires:Informatique Mots-clés : IIoT
Blockchain
BIIoT
Deep Learning
X-IIOTID
WUSTL-IIoT-2021
Edge- IIoTset.Index. décimale : 004 - Informatique Résumé :
The integration of blockchain development of advanced solutions for se- and deep learning technologies holds signi- cure data exchange, anomaly detection, and ficant promise in enhancing the security of threat mitigation, we aim to bolster the se- Industrial Internet of Things (IIoT) systems. curity of IIoT networks. Prototype systems This paper explores the potential of leveraging are designed and implemented to showcaseblockchain- based deep learning approaches to the practical application of blockchain-based address the unique security challenges faced deep learning in IIoT security, with evalua- by IIoT deployments. We propose novel ar- tions conducted in real-world industrial set- chitectures and algorithms tailored to seam- tings using the aforementioned datasets. Our lessly integrate blockchain and deep learning findings demonstrate the effectiveness of inte- techniques into IIoT environments, focusing grating blockchain and deep learning metho- on datasets representative of Edge IIoTset, dologies, highlighting improvements in secu- WUSTL-IIoT- 2021, and X-IIoTID. Through the rity, accuracy, and scalability in IIoT environ-
ments.Note de contenu : Sommaire
General Introduction 1
0.1 Genral Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
0.1.1 Context and Motivation . . . . . . . . . . . . . . . . . . . . . . . . 1
0.1.2 Objectives and Contributions . . . . . . . . . . . . . . . . . . . . . 1
0.1.3 Organization of the Manuscript . . . . . . . . . . . . . . . . . . . . 2
1 the Basic Concepts of IoT and IIoT 3
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Internet of Things . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 IoT History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 IoT Architecture Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4.1 Three-Layer Architecture . . . . . . . . . . . . . . . . . . . . . . . 6
1.4.2 Five-Layer Architecture . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Features of IoT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Domains of Internet of Things . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6.1 Industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6.2 Agriculture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6.3 Smart Cities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6.4 Healthcare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.7 Benefits of IoT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.8 Disadvantages of IoT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.9 Definition of IIoT .............................................................................................. 10
1.10 Transformation of IoT to IIoT ............................................................................ 10
1.11 Milestones of IIoT ............................................................................................. 10
1.12 IIoT challenges .................................................................................................. 11
1.13 IIoT Architecture ............................................................................................... 12
1.14 Industrial IoT and Industry 4.0 ........................................................................... 13
1.15 Foundations of the IIoT ..................................................................................... 14
1.16 The Scope of Application of the IIoT................................................................. 14
1.17 Conclusion ........................................................................................................ 14
2 Blockchain in Industrial Internet of Things (IIoT) 17
2.1 Introduction ...................................................................................................... 18
2.2 Definition of Blockchain ................................................................................... 18
2.3 History of Blockchain ....................................................................................... 18
2.4 Blockchain Functionalities and Implications ..................................................... 19
2.5 Applications of Blockchain ............................................................................... 20
2.6 Blockchain Key Characteristics......................................................................... 20
2.7 Types and Taxonomy of Blockchain Systems .................................................... 22
2.7.1 Types of Blockchain ............................................................................. 22
2.7.2 Comparison of Blockchain Types ......................................................... 22
2.8 Blockchain Infrastructure .................................................................................. 23
2.9 Working Of a Blockchain.................................................................................. 26
2.10 Blockchain -IIOT Challenges ............................................................................ 26
2.11 Potential Solutions to Blockchain-IIoT Challenges ........................................... 27
2.12 Chances of combining IIoT with blockchain ..................................................... 28
2.13 Architecture of BIIoT ........................................................................................ 29
2.14 BIIoT applications ............................................................................................ 30
2.14.1 Food sector ........................................................................................... 31
2.14.2 Smart manufacturing sector .................................................................. 31
2.14.3 Healthcare sector .................................................................................. 31
2.14.4 Automotive Industry ............................................................................. 31
2.14.5 Oil and gas sector.................................................................................. 32
2.14.6 Trade supply chain industry ................................................................ 32
2.15 BIIoT open research issues ................................................................................ 32
2.15.1 Privacy leakage ..................................................................................... 33
2.15.2 Security vulnerability ............................................................................ 33
2.15.3 Constraints of resources ........................................................................ 33
2.15.4 Scalability............................................................................................. 34
2.15.5 Big data difficulty ................................................................................. 34
2.16 Conclusion ........................................................................................................ 35
3 Machine Learning and Deep Learning 37
3.1 Introduction ...................................................................................................... 38
3.2 Definition of Machine Learning ........................................................................ 38
3.3 Renaissance of Machine Learning .................................................................... 38
3.4 Types of Machine Learning ............................................................................... 39
3.4.1 Supervised Learning ............................................................................. 39
3.4.2 Unsupervised Learning ......................................................................... 40
3.4.3 Semi-Supervised Learning .................................................................... 41
3.4.4 Reinforcement Learning ....................................................................... 41
3.5 Deep Learning .................................................................................................. 43
3.6 Layers of a neural network ................................................................................ 44
3.7 Activation Functions ......................................................................................... 45
3.8 Machine Learning vs Deep Learning................................................................. 45
3.9 Applications of Deep Learning .......................................................................... 46
3.10 Areas of Deep Learning System ........................................................................ 46
3.11 Deep Learning Architectures ............................................................................ 47
3.11.1 Convolutional neural networks (CNNs) ................................................ 47
3.11.2 Recurrent neural networks (RNNs) ....................................................... 47
3.11.3 Deep Neural Network (DNN) ................................................................ 48
3.12 DEEP LEARNING FOR THE IIOT ............................................................................ 48
3.13 Introduction ....................................................................................................... 50
3.14 Blockchain-based deep learning ........................................................................ 51
3.15 Blockchain-based Deep learning Application areas ........................................... 53
3.15.1 Healthcare ............................................................................................. 53
3.15.2 Internet of vehicles ................................................................................ 53
3.15.3 Traffic management .............................................................................. 54
3.15.4 Safety and protection............................................................................. 54
3.16 Blockchain-based Deep learning Services .......................................................... 54
3.16.1 Privacy preservation ............................................................................. 55
3.16.2 Violation prediction .............................................................................. 55
3.16.3 Anomaly detection ................................................................................ 55
3.16.4 Data traffic management ....................................................................... 55
3.16.5 Forking prevention ............................................................................... 55
3.16.6 EHR forecasting .................................................................................... 56
3.17 Blockchain-based Deep learningData types ....................................................... 56
3.17.1 Image data CNN.................................................................................... 56
3.17.2 Textual data Textual .............................................................................. 56
3.18 Blockchain-based Deep learning Deployment goal............................................ 56
3.18.1 Trusted AI models ................................................................................. 57
3.18.2 AI decisions sharing .............................................................................. 57
3.19 Conclusion ........................................................................................................ 58
4 Blockchain-Based Deep Learning to Improve the Security of the Industrial Internet of Things 59
4.1 Introduction ....................................................................................................... 63
4.2 A Novel Privacy-Preserving and Secure Framework (PPSS) for Industry 4.0/5.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.2.1 Definition and Proposed Method........................................................... 63
4.3 Integrating Deep Learning and Blockchain to Secure Industrial IoT Net- works from Cyberattacks .................................................................................. 63
4.3.1 Definition of intrusion detection system (IDS) ....................................... 63
4.4 Differences and similarities ............................................................................... 64
4.5 Dataset in IIoT................................................................................................... 65
4.6 Description of Edge-IIoTset ........................................................................................ 68
4.7 Attacks EDGE-IIoTset Dataset .................................................................................... 68
4.7.1 Attaques DoS/DDoS ............................................................................. 68
4.7.2 Information Collection .......................................................................... 68
4.8 Man in the middle attack .................................................................................. 69
4.9
Malware Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
69
4.10
Description of WUSTL-IIoT-2021 . . . . . . . . . . . . . . . . . . . . . . . .
71
4.11
Attacks in WUSTL-IIoT-2021 Dataset . . . . . . . . . . . . . . . . . . . . .
71
4.11.1 Denial-of-Service (DoS) Attacks . . . . . . . . . . . . . . . . . . . . . . . . .
71
4.11.2 Reconnaissance Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
71
4.11.3 Command Injection Attacks . . . . . . . . . . . . . . . . . . . . . . .
71
4.11.4 Backdoor Attacks . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . .
71
4.12
Description of X-IIoTID . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
73
4.13
Number of Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
73
4.13.1 Class 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
73
4.13.2 Class 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
73
4.13.3 Class 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
73
4.14
Attacks in X-IIoTID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
73
4.14.1 Denial-of-Service (DoS) Attacks . . . . . . . . . . . . . . . . . . . . . . . . .
73
4.14.2ScanningAttacks. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
73
4.14.3 Brute-Force Attacks (Attaque BruteForce) . . . . . . . . . . . . . .
74
4.14.4 MQTT_cloud_broker_subscription Attack . . . . . . . . . . . . . .
74
4.14.5 Discovering_resources Attack . . . . . . . . . . . . . . . . . . . . .
74
4.14.6 Exfiltration Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
74
4.14.7 Insider_malicious Attack . . . . . . . . . . . . . . . . . . . . . . . .
74
4.14.8 Modbus_register_reading Attack . . . . . . . . . . . . . . . . . . .
74
4.14.9 False_data_injection Attack . . . . . . . . . . . . . . . . . . . . . .
74
4.14.10 Command and Control (C&C) Attack . . . . . . . . . . . . . . . . .
75
4.14.11 Dictionary Attack (Attaque Dictionary) . . . . . . . . . . . . . . .
75
4.14.12 TCP Relay Attack (Attaque TCP Relay) . . . . . . . . . . . . . . . .
75
4.14.13 Fuzzing Attack (Attaque fuzzing) . . . . . . . . . . . . . . . . . . .
75
4.14.14 Reverse_shell Attack . . . . . . . . . . . . . . . . . . . . . . . . . .
75
4.14.15 Man-in-the-Middle (MitM) Attack . . . . . . . . . . . . . . . . . . . . . . . . . .
75
4.14.16 Fake Notification Attack . . . . . . . . . . . . . . . . . . . . . . . .
75
4.14.17 Cryptoransomware Attack . . . . . . . . . . . . . . . . . . . . . . .
75
4.15
Visual Display for Three Different Kinds of Datasets . . . . . . . . . . . . .
79
4.15.1 Heatmap Correlation of Numerical Features . . . . . . . . . . . . .
79
4.16
Top Attack Types Displayed in a Bar Chart . . . . . . . . . . . . . . . . . .
81
4.17
Distribution of Attack Types in the Dataset . . . . . . . . . . . . . . . . . .
83
4.17.1 1) Distribution of Attack Types in the Edge-IIoT Dataset . . . . . .
83
4.17.2 Distribution of Attack Types in the X-IIOTID Dataset . . . . . . . .
84
4.17.3 Exploring Data Distribution through Histograms . . . . . . . . . .
87
4.18
Application of DNN Models in IIoT Datasets . . . . . . . . . . . . . . . . .
90
4.18.1 Classification Report of the Model in Dataset . . . . . . . . . . . .
91
4.19
Integrate Blockchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
94
4.19.1 Why Integrate Blockchain . . . . . . . . . . . . . . . . . . . . . . .
94
4.19.2 How to Integrate Blockchain with a Deep Learning Model . . . . .
94
4.19.3 Blockchain details in Edge-IIoT . . . . . . . . . . . . . . . . . . . .
95
4.19.4 Blockchain details in X-IIOTID . . . . . . . . . . . . . . . . . . . .
95
4.19.5 Blockchain details in Wustl-IIoT . . . . . . . . . . . . . . . . . . .
964.19.6 Accuracy ............................................................................................... 96
4.19.7 Macro Average ..................................................................................... 96
4.19.8 Weighted Average ................................................................................. 97
4.20 Conclusion ........................................................................................................ 97
Côte titre : MAI/0925
Blockchain-based deep learning to improve the security of the Industrial Internet of Things [texte imprimé] / Aya Bendjedi, Auteur ; Chems Zerguine ; Goudjil, Lakhdar, Directeur de thèse . - [S.l.] : Setif:UFA, 2024 . - 1 vol (99 f .) ; 29 cm.
Langues : Anglais (eng)
Catégories : Thèses & Mémoires:Informatique Mots-clés : IIoT
Blockchain
BIIoT
Deep Learning
X-IIOTID
WUSTL-IIoT-2021
Edge- IIoTset.Index. décimale : 004 - Informatique Résumé :
The integration of blockchain development of advanced solutions for se- and deep learning technologies holds signi- cure data exchange, anomaly detection, and ficant promise in enhancing the security of threat mitigation, we aim to bolster the se- Industrial Internet of Things (IIoT) systems. curity of IIoT networks. Prototype systems This paper explores the potential of leveraging are designed and implemented to showcaseblockchain- based deep learning approaches to the practical application of blockchain-based address the unique security challenges faced deep learning in IIoT security, with evalua- by IIoT deployments. We propose novel ar- tions conducted in real-world industrial set- chitectures and algorithms tailored to seam- tings using the aforementioned datasets. Our lessly integrate blockchain and deep learning findings demonstrate the effectiveness of inte- techniques into IIoT environments, focusing grating blockchain and deep learning metho- on datasets representative of Edge IIoTset, dologies, highlighting improvements in secu- WUSTL-IIoT- 2021, and X-IIoTID. Through the rity, accuracy, and scalability in IIoT environ-
ments.Note de contenu : Sommaire
General Introduction 1
0.1 Genral Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
0.1.1 Context and Motivation . . . . . . . . . . . . . . . . . . . . . . . . 1
0.1.2 Objectives and Contributions . . . . . . . . . . . . . . . . . . . . . 1
0.1.3 Organization of the Manuscript . . . . . . . . . . . . . . . . . . . . 2
1 the Basic Concepts of IoT and IIoT 3
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Internet of Things . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 IoT History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 IoT Architecture Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4.1 Three-Layer Architecture . . . . . . . . . . . . . . . . . . . . . . . 6
1.4.2 Five-Layer Architecture . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Features of IoT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Domains of Internet of Things . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6.1 Industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6.2 Agriculture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6.3 Smart Cities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6.4 Healthcare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.7 Benefits of IoT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.8 Disadvantages of IoT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.9 Definition of IIoT .............................................................................................. 10
1.10 Transformation of IoT to IIoT ............................................................................ 10
1.11 Milestones of IIoT ............................................................................................. 10
1.12 IIoT challenges .................................................................................................. 11
1.13 IIoT Architecture ............................................................................................... 12
1.14 Industrial IoT and Industry 4.0 ........................................................................... 13
1.15 Foundations of the IIoT ..................................................................................... 14
1.16 The Scope of Application of the IIoT................................................................. 14
1.17 Conclusion ........................................................................................................ 14
2 Blockchain in Industrial Internet of Things (IIoT) 17
2.1 Introduction ...................................................................................................... 18
2.2 Definition of Blockchain ................................................................................... 18
2.3 History of Blockchain ....................................................................................... 18
2.4 Blockchain Functionalities and Implications ..................................................... 19
2.5 Applications of Blockchain ............................................................................... 20
2.6 Blockchain Key Characteristics......................................................................... 20
2.7 Types and Taxonomy of Blockchain Systems .................................................... 22
2.7.1 Types of Blockchain ............................................................................. 22
2.7.2 Comparison of Blockchain Types ......................................................... 22
2.8 Blockchain Infrastructure .................................................................................. 23
2.9 Working Of a Blockchain.................................................................................. 26
2.10 Blockchain -IIOT Challenges ............................................................................ 26
2.11 Potential Solutions to Blockchain-IIoT Challenges ........................................... 27
2.12 Chances of combining IIoT with blockchain ..................................................... 28
2.13 Architecture of BIIoT ........................................................................................ 29
2.14 BIIoT applications ............................................................................................ 30
2.14.1 Food sector ........................................................................................... 31
2.14.2 Smart manufacturing sector .................................................................. 31
2.14.3 Healthcare sector .................................................................................. 31
2.14.4 Automotive Industry ............................................................................. 31
2.14.5 Oil and gas sector.................................................................................. 32
2.14.6 Trade supply chain industry ................................................................ 32
2.15 BIIoT open research issues ................................................................................ 32
2.15.1 Privacy leakage ..................................................................................... 33
2.15.2 Security vulnerability ............................................................................ 33
2.15.3 Constraints of resources ........................................................................ 33
2.15.4 Scalability............................................................................................. 34
2.15.5 Big data difficulty ................................................................................. 34
2.16 Conclusion ........................................................................................................ 35
3 Machine Learning and Deep Learning 37
3.1 Introduction ...................................................................................................... 38
3.2 Definition of Machine Learning ........................................................................ 38
3.3 Renaissance of Machine Learning .................................................................... 38
3.4 Types of Machine Learning ............................................................................... 39
3.4.1 Supervised Learning ............................................................................. 39
3.4.2 Unsupervised Learning ......................................................................... 40
3.4.3 Semi-Supervised Learning .................................................................... 41
3.4.4 Reinforcement Learning ....................................................................... 41
3.5 Deep Learning .................................................................................................. 43
3.6 Layers of a neural network ................................................................................ 44
3.7 Activation Functions ......................................................................................... 45
3.8 Machine Learning vs Deep Learning................................................................. 45
3.9 Applications of Deep Learning .......................................................................... 46
3.10 Areas of Deep Learning System ........................................................................ 46
3.11 Deep Learning Architectures ............................................................................ 47
3.11.1 Convolutional neural networks (CNNs) ................................................ 47
3.11.2 Recurrent neural networks (RNNs) ....................................................... 47
3.11.3 Deep Neural Network (DNN) ................................................................ 48
3.12 DEEP LEARNING FOR THE IIOT ............................................................................ 48
3.13 Introduction ....................................................................................................... 50
3.14 Blockchain-based deep learning ........................................................................ 51
3.15 Blockchain-based Deep learning Application areas ........................................... 53
3.15.1 Healthcare ............................................................................................. 53
3.15.2 Internet of vehicles ................................................................................ 53
3.15.3 Traffic management .............................................................................. 54
3.15.4 Safety and protection............................................................................. 54
3.16 Blockchain-based Deep learning Services .......................................................... 54
3.16.1 Privacy preservation ............................................................................. 55
3.16.2 Violation prediction .............................................................................. 55
3.16.3 Anomaly detection ................................................................................ 55
3.16.4 Data traffic management ....................................................................... 55
3.16.5 Forking prevention ............................................................................... 55
3.16.6 EHR forecasting .................................................................................... 56
3.17 Blockchain-based Deep learningData types ....................................................... 56
3.17.1 Image data CNN.................................................................................... 56
3.17.2 Textual data Textual .............................................................................. 56
3.18 Blockchain-based Deep learning Deployment goal............................................ 56
3.18.1 Trusted AI models ................................................................................. 57
3.18.2 AI decisions sharing .............................................................................. 57
3.19 Conclusion ........................................................................................................ 58
4 Blockchain-Based Deep Learning to Improve the Security of the Industrial Internet of Things 59
4.1 Introduction ....................................................................................................... 63
4.2 A Novel Privacy-Preserving and Secure Framework (PPSS) for Industry 4.0/5.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.2.1 Definition and Proposed Method........................................................... 63
4.3 Integrating Deep Learning and Blockchain to Secure Industrial IoT Net- works from Cyberattacks .................................................................................. 63
4.3.1 Definition of intrusion detection system (IDS) ....................................... 63
4.4 Differences and similarities ............................................................................... 64
4.5 Dataset in IIoT................................................................................................... 65
4.6 Description of Edge-IIoTset ........................................................................................ 68
4.7 Attacks EDGE-IIoTset Dataset .................................................................................... 68
4.7.1 Attaques DoS/DDoS ............................................................................. 68
4.7.2 Information Collection .......................................................................... 68
4.8 Man in the middle attack .................................................................................. 69
4.9
Malware Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
69
4.10
Description of WUSTL-IIoT-2021 . . . . . . . . . . . . . . . . . . . . . . . .
71
4.11
Attacks in WUSTL-IIoT-2021 Dataset . . . . . . . . . . . . . . . . . . . . .
71
4.11.1 Denial-of-Service (DoS) Attacks . . . . . . . . . . . . . . . . . . . . . . . . .
71
4.11.2 Reconnaissance Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
71
4.11.3 Command Injection Attacks . . . . . . . . . . . . . . . . . . . . . . .
71
4.11.4 Backdoor Attacks . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . .
71
4.12
Description of X-IIoTID . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
73
4.13
Number of Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
73
4.13.1 Class 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
73
4.13.2 Class 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
73
4.13.3 Class 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
73
4.14
Attacks in X-IIoTID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
73
4.14.1 Denial-of-Service (DoS) Attacks . . . . . . . . . . . . . . . . . . . . . . . . .
73
4.14.2ScanningAttacks. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
73
4.14.3 Brute-Force Attacks (Attaque BruteForce) . . . . . . . . . . . . . .
74
4.14.4 MQTT_cloud_broker_subscription Attack . . . . . . . . . . . . . .
74
4.14.5 Discovering_resources Attack . . . . . . . . . . . . . . . . . . . . .
74
4.14.6 Exfiltration Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
74
4.14.7 Insider_malicious Attack . . . . . . . . . . . . . . . . . . . . . . . .
74
4.14.8 Modbus_register_reading Attack . . . . . . . . . . . . . . . . . . .
74
4.14.9 False_data_injection Attack . . . . . . . . . . . . . . . . . . . . . .
74
4.14.10 Command and Control (C&C) Attack . . . . . . . . . . . . . . . . .
75
4.14.11 Dictionary Attack (Attaque Dictionary) . . . . . . . . . . . . . . .
75
4.14.12 TCP Relay Attack (Attaque TCP Relay) . . . . . . . . . . . . . . . .
75
4.14.13 Fuzzing Attack (Attaque fuzzing) . . . . . . . . . . . . . . . . . . .
75
4.14.14 Reverse_shell Attack . . . . . . . . . . . . . . . . . . . . . . . . . .
75
4.14.15 Man-in-the-Middle (MitM) Attack . . . . . . . . . . . . . . . . . . . . . . . . . .
75
4.14.16 Fake Notification Attack . . . . . . . . . . . . . . . . . . . . . . . .
75
4.14.17 Cryptoransomware Attack . . . . . . . . . . . . . . . . . . . . . . .
75
4.15
Visual Display for Three Different Kinds of Datasets . . . . . . . . . . . . .
79
4.15.1 Heatmap Correlation of Numerical Features . . . . . . . . . . . . .
79
4.16
Top Attack Types Displayed in a Bar Chart . . . . . . . . . . . . . . . . . .
81
4.17
Distribution of Attack Types in the Dataset . . . . . . . . . . . . . . . . . .
83
4.17.1 1) Distribution of Attack Types in the Edge-IIoT Dataset . . . . . .
83
4.17.2 Distribution of Attack Types in the X-IIOTID Dataset . . . . . . . .
84
4.17.3 Exploring Data Distribution through Histograms . . . . . . . . . .
87
4.18
Application of DNN Models in IIoT Datasets . . . . . . . . . . . . . . . . .
90
4.18.1 Classification Report of the Model in Dataset . . . . . . . . . . . .
91
4.19
Integrate Blockchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
94
4.19.1 Why Integrate Blockchain . . . . . . . . . . . . . . . . . . . . . . .
94
4.19.2 How to Integrate Blockchain with a Deep Learning Model . . . . .
94
4.19.3 Blockchain details in Edge-IIoT . . . . . . . . . . . . . . . . . . . .
95
4.19.4 Blockchain details in X-IIOTID . . . . . . . . . . . . . . . . . . . .
95
4.19.5 Blockchain details in Wustl-IIoT . . . . . . . . . . . . . . . . . . .
964.19.6 Accuracy ............................................................................................... 96
4.19.7 Macro Average ..................................................................................... 96
4.19.8 Weighted Average ................................................................................. 97
4.20 Conclusion ........................................................................................................ 97
Côte titre : MAI/0925
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité MAI/0925 MAI/0925 Mémoire Bibliothéque des sciences Anglais Disponible
Disponible