University Sétif 1 FERHAT ABBAS Faculty of Sciences
Détail de l'auteur
Auteur Yousra Sahraoui |
Documents disponibles écrits par cet auteur



Variational and asymptotic of frictional contact problem for a general operator with friction law in thin domain / Yousra Sahraoui
Titre : Variational and asymptotic of frictional contact problem for a general operator with friction law in thin domain Type de document : texte imprimé Auteurs : Yousra Sahraoui, Auteur ; Hamid Benseridi, Directeur de publication, rédacteur en chef Editeur : Sétif:UFS Année de publication : 2024 Importance : 1 vol (55 f.) Format : 29 cm Langues : Anglais (eng) Catégories : Thèses & Mémoires:Mathématique Mots-clés : priori estimates
Boundary value problem
Generalized boundary
conditions
Weak equations
Tresca Law
Variational formulationIndex. décimale : 510-Mathématique Résumé : In this Master's memory, our objective lies on the variational and asymptotic
analysis of a nonlinear boundary problem, which theoretically generalizes the Lamé system
in a thin 3D domain with friction and generalized boundary condition. To achieve this goal,
we first focus on the theoretical study of the weak solution of the presented problem. We then
examine the asymptotic behavior as the small parameter ζ approaches zero. Finally, we show
different a priori estimates, which will allow us to prove that the problem considered
converges in the plan towards a new well-defined problem.Note de contenu : Sommaire
Dédicaces 5
1 PRELIMINARY FUNCTIONAL ANALYSIS 9
1.1 Lebesgue and normed spaces Lp. . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Sobolev space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.1 low convergence and low star convergence . . . . . . . . . . . . . 12
1.2.2 Green formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.3 Convex and semi-continuous functions below . . . . . . . . . . . 13
1.3 Different inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.1 Korn inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.2 Poincaré inequality . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.3 Hölder inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.4 Cauchy-Schwarz inequality . . . . . . . . . . . . . . . . . . . . . . 15
1.3.5 Young inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4 General information on elliptic variational inequalities (EVI) and their
approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4.1 Existence and uniqueness results for the IVE of the first genus 16
1.4.2 Existence and uniqueness results for the IVE of the second genus 18
2 VARIATIONAL STUDY OF AN ELASTIC IN A THIN DOMAIN 20
2.1 Variational formulation of the problem. . . . . . . . . . . . . . . . . . . . 24
2.2 Existence and uniqueness of the weak solution. . . . . . . . . . . . . . 28
3 ASYMPTOTIC STUDY OF PROBLEM Pζ 34
3.1 Asymptotic analysis of the problem Pζ . . . . . . . . . . . . . . . . . . . 35
3.1.1 Problem in transpose form. . . . . . . . . . . . . . . . . . . . . . . 35
3.1.2 A priori estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Convergence results and limit problem . . . . . . . . . . . . . . . . . . . 40Côte titre : MAM/0703 Variational and asymptotic of frictional contact problem for a general operator with friction law in thin domain [texte imprimé] / Yousra Sahraoui, Auteur ; Hamid Benseridi, Directeur de publication, rédacteur en chef . - [S.l.] : Sétif:UFS, 2024 . - 1 vol (55 f.) ; 29 cm.
Langues : Anglais (eng)
Catégories : Thèses & Mémoires:Mathématique Mots-clés : priori estimates
Boundary value problem
Generalized boundary
conditions
Weak equations
Tresca Law
Variational formulationIndex. décimale : 510-Mathématique Résumé : In this Master's memory, our objective lies on the variational and asymptotic
analysis of a nonlinear boundary problem, which theoretically generalizes the Lamé system
in a thin 3D domain with friction and generalized boundary condition. To achieve this goal,
we first focus on the theoretical study of the weak solution of the presented problem. We then
examine the asymptotic behavior as the small parameter ζ approaches zero. Finally, we show
different a priori estimates, which will allow us to prove that the problem considered
converges in the plan towards a new well-defined problem.Note de contenu : Sommaire
Dédicaces 5
1 PRELIMINARY FUNCTIONAL ANALYSIS 9
1.1 Lebesgue and normed spaces Lp. . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Sobolev space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.1 low convergence and low star convergence . . . . . . . . . . . . . 12
1.2.2 Green formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.3 Convex and semi-continuous functions below . . . . . . . . . . . 13
1.3 Different inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.1 Korn inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.2 Poincaré inequality . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.3 Hölder inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.4 Cauchy-Schwarz inequality . . . . . . . . . . . . . . . . . . . . . . 15
1.3.5 Young inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4 General information on elliptic variational inequalities (EVI) and their
approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4.1 Existence and uniqueness results for the IVE of the first genus 16
1.4.2 Existence and uniqueness results for the IVE of the second genus 18
2 VARIATIONAL STUDY OF AN ELASTIC IN A THIN DOMAIN 20
2.1 Variational formulation of the problem. . . . . . . . . . . . . . . . . . . . 24
2.2 Existence and uniqueness of the weak solution. . . . . . . . . . . . . . 28
3 ASYMPTOTIC STUDY OF PROBLEM Pζ 34
3.1 Asymptotic analysis of the problem Pζ . . . . . . . . . . . . . . . . . . . 35
3.1.1 Problem in transpose form. . . . . . . . . . . . . . . . . . . . . . . 35
3.1.2 A priori estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Convergence results and limit problem . . . . . . . . . . . . . . . . . . . 40Côte titre : MAM/0703 Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité MAM/0703 MAM/0703 Mémoire Bibliothéque des sciences Anglais Disponible
Disponible