University Sétif 1 FERHAT ABBAS Faculty of Sciences
Détail de l'auteur
Auteur Rayene Assil |
Documents disponibles écrits par cet auteur



Titre : Improved Gravitational Search Algorithm for Solving Optimization Problems Type de document : texte imprimé Auteurs : Rayene Assil, Auteur ; Fatma Zohra Kemouche ; Ihcene Naas, Directeur de thèse Editeur : Sétif:UFS Année de publication : 2024 Importance : 1 vol (25 f.) Format : 29 cm Langues : Anglais (eng) Catégories : Thèses & Mémoires:Mathématique Mots-clés : Optimizationproblem
Metaheuristic
GravitationalSearchAlgorithm
Stochasticstability PlanetaryGearTrainproblemIndex. décimale : 510-Mathématique Résumé :
Inaddressingreal-worldoptimizationchallenges,classicaloptimizationmethodsoftenfallshort,leading
to theriseofmetaheuristicalgorithms.Analyzingthestabilityofthesealgorithmsisessentialforun-
derstandingtheirfunctionality,definingstabilitydomainsforcontrolparameters,andenhancingtheir
efficacy.ThisstudyfocusesonmodelingandstabilityanalysisoftheGravitationalSearchAlgorithm(GSA),
a prominentmetaheuristicinspiredbygravitationalinteractions.Mimickingcelestialbodies’movements,
GSA collaborativelyexploressolutionspacestotacklecomplexoptimizationtasks.ThroughtheVan
Neumancriteria,thealgorithm’sstochasticstabilityconditionsarederivedandutilizedtorefineparame-
terization.AsimulationisconductedonthePlanetaryGearTrainproblemtovalidatethetheoreticalfindings.Note de contenu :
Sommaire
1 Metaheuristics:Generalitiesanddefinitions1
1.1Introduction........................................ 1
1.2Preliminaries....................................... 1
1.2.1Optimizationproblem.............................. 1
1.2.2Combinatorialoptimization.......................... 2
1.2.3Complexity.................................... 3
1.2.4Optimizationmethods.............................. 4
1.3Metaheuristics....................................... 5
1.3.1Overviewofmetaheuristicalgorithms..................... 5
1.3.2Texonomyofmeta-heuristicalgorithms................... 6
1.3.3Stabilityofmetaheuristicalgorithms..................... 7
2 GravitationalSearchAlgorithm:Overviewandstabilityanalysis9
2.1Introduction........................................ 9
2.2Overviewongravitationalsearchalgorithm..................... 9
2.2.1Thepseudo-codeofGSAalgorithm...................... 12
2.3Stabilityanalysis..................................... 12
2.3.1Relatedwork.................................... 12
2.3.2VanNeumanstability.............................. 14
2.3.3Model........................................ 14
3 ApplicationofGSAfornoisereductioninplanetarygearstrain18
3.1Introduction........................................ 18
3.2PlanetaryGearTrainproblem.............................. 18
3.2.1Theformulationoftheproblem........................ 19
3.3Experimentalresultsandanalysis........................... 22
3.3.1Testedalgorithms................................. 22
3.3.2Parametersettings................................ 22
3.3.3Constrainthandling............................... 23
3.3.4Resultsanddiscussions............................. 23Côte titre : MAM/0730 Improved Gravitational Search Algorithm for Solving Optimization Problems [texte imprimé] / Rayene Assil, Auteur ; Fatma Zohra Kemouche ; Ihcene Naas, Directeur de thèse . - [S.l.] : Sétif:UFS, 2024 . - 1 vol (25 f.) ; 29 cm.
Langues : Anglais (eng)
Catégories : Thèses & Mémoires:Mathématique Mots-clés : Optimizationproblem
Metaheuristic
GravitationalSearchAlgorithm
Stochasticstability PlanetaryGearTrainproblemIndex. décimale : 510-Mathématique Résumé :
Inaddressingreal-worldoptimizationchallenges,classicaloptimizationmethodsoftenfallshort,leading
to theriseofmetaheuristicalgorithms.Analyzingthestabilityofthesealgorithmsisessentialforun-
derstandingtheirfunctionality,definingstabilitydomainsforcontrolparameters,andenhancingtheir
efficacy.ThisstudyfocusesonmodelingandstabilityanalysisoftheGravitationalSearchAlgorithm(GSA),
a prominentmetaheuristicinspiredbygravitationalinteractions.Mimickingcelestialbodies’movements,
GSA collaborativelyexploressolutionspacestotacklecomplexoptimizationtasks.ThroughtheVan
Neumancriteria,thealgorithm’sstochasticstabilityconditionsarederivedandutilizedtorefineparame-
terization.AsimulationisconductedonthePlanetaryGearTrainproblemtovalidatethetheoreticalfindings.Note de contenu :
Sommaire
1 Metaheuristics:Generalitiesanddefinitions1
1.1Introduction........................................ 1
1.2Preliminaries....................................... 1
1.2.1Optimizationproblem.............................. 1
1.2.2Combinatorialoptimization.......................... 2
1.2.3Complexity.................................... 3
1.2.4Optimizationmethods.............................. 4
1.3Metaheuristics....................................... 5
1.3.1Overviewofmetaheuristicalgorithms..................... 5
1.3.2Texonomyofmeta-heuristicalgorithms................... 6
1.3.3Stabilityofmetaheuristicalgorithms..................... 7
2 GravitationalSearchAlgorithm:Overviewandstabilityanalysis9
2.1Introduction........................................ 9
2.2Overviewongravitationalsearchalgorithm..................... 9
2.2.1Thepseudo-codeofGSAalgorithm...................... 12
2.3Stabilityanalysis..................................... 12
2.3.1Relatedwork.................................... 12
2.3.2VanNeumanstability.............................. 14
2.3.3Model........................................ 14
3 ApplicationofGSAfornoisereductioninplanetarygearstrain18
3.1Introduction........................................ 18
3.2PlanetaryGearTrainproblem.............................. 18
3.2.1Theformulationoftheproblem........................ 19
3.3Experimentalresultsandanalysis........................... 22
3.3.1Testedalgorithms................................. 22
3.3.2Parametersettings................................ 22
3.3.3Constrainthandling............................... 23
3.3.4Resultsanddiscussions............................. 23Côte titre : MAM/0730 Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité MAM/0730 MAM/0730 Mémoire Bibliothéque des sciences Anglais Disponible
Disponible