University Sétif 1 FERHAT ABBAS Faculty of Sciences
Détail de l'auteur
Auteur Rania Benmenni |
Documents disponibles écrits par cet auteur
Ajouter le résultat dans votre panier Affiner la recherche
Titre : DIFFERENTIAL-NONDIFFERENTIABLE GAMES AND APPLICATIONS IN ECONOMICS Type de document : document électronique Auteurs : Rania Benmenni, Auteur ; Nourreddine Daili, Directeur de thèse Editeur : Setif:UFA Année de publication : 2025 Importance : 1 vol (60 f.) Format : 29 cm Langues : Anglais (eng) Catégories : Thèses & Mémoires:Mathématique Mots-clés : Nonzero-sum differential games
Maximum principle
Dynamic programming principle
Viscosity solutionsIndex. décimale : 510 - Mathématique Résumé :
The main objective of this thesis is to present the connection between the
adjoint variables in the maximum principle (MP) and the value function in the dynamic
programming principle (DPP) for two-player nonzero-sum differential games, both in the
smooth and nonsmooth cases. This relationship is established in terms of derivatives in
the smooth case and through viscosity solutions when the value function is not smooth,
with economic interpretations related to the adjoint variables.
In the second part, we apply a numerical method based on the Jacobi spectral method
(JSM) to solve the nonlinear two-point boundary value problems (TPBVPs) derived from
the maximum principle. These problems are then transferred into a system of algebraic
equations to determine the open-loop Nash equilibrium (OLNE) for nonzero-sum differential
games. Illustrative examples are presented to demonstrate the effectiveness and
validity of the proposed method.Note de contenu : Sommaire
1 An Overview of Differential Games Theory 4
1.1 Optimal Control Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.2 Approaches to Solving Optimal Control Problem . . . . . . . . . . . . . . 6
1.2 Basic Notions of Game Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.1 Game Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.2 Strategic-Form Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.3 Nash Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Differential Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.2 Information Structures and Strategies . . . . . . . . . . . . . . . . . . . . . 13
1.3.3 Linear Quadratic Differential Games (LQDGs) . . . . . . . . . . . . . . . . 14
2 A Connection Between the Adjoint Variables and Value Function for Differential
Games 16
2.1 Formulation of the Game Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.1 Maximum Principle (MP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.2 Dynamic Programming Principle (DPP) . . . . . . . . . . . . . . . . . . . . 19
2.2 The Connection Between MP and DPP : Smooth Case . . . . . . . . . . . . . . . . 21
2.3 The Connection Between MP and DPP : Nonsmooth Case . . . . . . . . . . . . . . 23
3 Applications To Economic 30
3.1 Producer-Consumer Game with Sticky Price . . . . . . . . . . . . . . . . . . . . . 30
3.1.1 Formulation of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 The Connection Between MP and DPP . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.1 Smooth Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.2 Nonsmooth Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4 Jacobi Spectral Method for Solving Differential Games 37
4.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Jacobi Spectral Method for Nonzero-sum Differential Games . . . . . . . . . . . . 39
4.3 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Conclusion 56
Bibliography 60Côte titre : DM/0212 DIFFERENTIAL-NONDIFFERENTIABLE GAMES AND APPLICATIONS IN ECONOMICS [document électronique] / Rania Benmenni, Auteur ; Nourreddine Daili, Directeur de thèse . - [S.l.] : Setif:UFA, 2025 . - 1 vol (60 f.) ; 29 cm.
Langues : Anglais (eng)
Catégories : Thèses & Mémoires:Mathématique Mots-clés : Nonzero-sum differential games
Maximum principle
Dynamic programming principle
Viscosity solutionsIndex. décimale : 510 - Mathématique Résumé :
The main objective of this thesis is to present the connection between the
adjoint variables in the maximum principle (MP) and the value function in the dynamic
programming principle (DPP) for two-player nonzero-sum differential games, both in the
smooth and nonsmooth cases. This relationship is established in terms of derivatives in
the smooth case and through viscosity solutions when the value function is not smooth,
with economic interpretations related to the adjoint variables.
In the second part, we apply a numerical method based on the Jacobi spectral method
(JSM) to solve the nonlinear two-point boundary value problems (TPBVPs) derived from
the maximum principle. These problems are then transferred into a system of algebraic
equations to determine the open-loop Nash equilibrium (OLNE) for nonzero-sum differential
games. Illustrative examples are presented to demonstrate the effectiveness and
validity of the proposed method.Note de contenu : Sommaire
1 An Overview of Differential Games Theory 4
1.1 Optimal Control Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.2 Approaches to Solving Optimal Control Problem . . . . . . . . . . . . . . 6
1.2 Basic Notions of Game Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.1 Game Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.2 Strategic-Form Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.3 Nash Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Differential Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.2 Information Structures and Strategies . . . . . . . . . . . . . . . . . . . . . 13
1.3.3 Linear Quadratic Differential Games (LQDGs) . . . . . . . . . . . . . . . . 14
2 A Connection Between the Adjoint Variables and Value Function for Differential
Games 16
2.1 Formulation of the Game Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.1 Maximum Principle (MP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.2 Dynamic Programming Principle (DPP) . . . . . . . . . . . . . . . . . . . . 19
2.2 The Connection Between MP and DPP : Smooth Case . . . . . . . . . . . . . . . . 21
2.3 The Connection Between MP and DPP : Nonsmooth Case . . . . . . . . . . . . . . 23
3 Applications To Economic 30
3.1 Producer-Consumer Game with Sticky Price . . . . . . . . . . . . . . . . . . . . . 30
3.1.1 Formulation of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 The Connection Between MP and DPP . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.1 Smooth Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.2 Nonsmooth Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4 Jacobi Spectral Method for Solving Differential Games 37
4.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Jacobi Spectral Method for Nonzero-sum Differential Games . . . . . . . . . . . . 39
4.3 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Conclusion 56
Bibliography 60Côte titre : DM/0212 Exemplaires
Code-barres Cote Support Localisation Section Disponibilité aucun exemplaire
Titre : DIFFERENTIAL-NONDIFFERENTIABLE GAMES AND APPLICATIONS IN ECONOMICS Type de document : document électronique Auteurs : Rania Benmenni, Auteur ; Nourreddine Daili, Directeur de thèse Editeur : Setif:UFA Année de publication : 2025 Importance : 1 vol (60 f.) Format : 29 cm Langues : Anglais (eng) Catégories : Thèses & Mémoires:Mathématique Mots-clés : Nonzero-sum differential games
Maximum principle
Dynamic programming principle
Viscosity solutionsIndex. décimale : 510 - Mathématique Résumé :
The main objective of this thesis is to present the connection between the
adjoint variables in the maximum principle (MP) and the value function in the dynamic
programming principle (DPP) for two-player nonzero-sum differential games, both in the
smooth and nonsmooth cases. This relationship is established in terms of derivatives in
the smooth case and through viscosity solutions when the value function is not smooth,
with economic interpretations related to the adjoint variables.
In the second part, we apply a numerical method based on the Jacobi spectral method
(JSM) to solve the nonlinear two-point boundary value problems (TPBVPs) derived from
the maximum principle. These problems are then transferred into a system of algebraic
equations to determine the open-loop Nash equilibrium (OLNE) for nonzero-sum differential
games. Illustrative examples are presented to demonstrate the effectiveness and
validity of the proposed method.Note de contenu : Sommaire
1 An Overview of Differential Games Theory 4
1.1 Optimal Control Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.2 Approaches to Solving Optimal Control Problem . . . . . . . . . . . . . . 6
1.2 Basic Notions of Game Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.1 Game Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.2 Strategic-Form Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.3 Nash Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Differential Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.2 Information Structures and Strategies . . . . . . . . . . . . . . . . . . . . . 13
1.3.3 Linear Quadratic Differential Games (LQDGs) . . . . . . . . . . . . . . . . 14
2 A Connection Between the Adjoint Variables and Value Function for Differential
Games 16
2.1 Formulation of the Game Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.1 Maximum Principle (MP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.2 Dynamic Programming Principle (DPP) . . . . . . . . . . . . . . . . . . . . 19
2.2 The Connection Between MP and DPP : Smooth Case . . . . . . . . . . . . . . . . 21
2.3 The Connection Between MP and DPP : Nonsmooth Case . . . . . . . . . . . . . . 23
3 Applications To Economic 30
3.1 Producer-Consumer Game with Sticky Price . . . . . . . . . . . . . . . . . . . . . 30
3.1.1 Formulation of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 The Connection Between MP and DPP . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.1 Smooth Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.2 Nonsmooth Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4 Jacobi Spectral Method for Solving Differential Games 37
4.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Jacobi Spectral Method for Nonzero-sum Differential Games . . . . . . . . . . . . 39
4.3 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Conclusion 56
Bibliography 60Côte titre : DM/0212 DIFFERENTIAL-NONDIFFERENTIABLE GAMES AND APPLICATIONS IN ECONOMICS [document électronique] / Rania Benmenni, Auteur ; Nourreddine Daili, Directeur de thèse . - [S.l.] : Setif:UFA, 2025 . - 1 vol (60 f.) ; 29 cm.
Langues : Anglais (eng)
Catégories : Thèses & Mémoires:Mathématique Mots-clés : Nonzero-sum differential games
Maximum principle
Dynamic programming principle
Viscosity solutionsIndex. décimale : 510 - Mathématique Résumé :
The main objective of this thesis is to present the connection between the
adjoint variables in the maximum principle (MP) and the value function in the dynamic
programming principle (DPP) for two-player nonzero-sum differential games, both in the
smooth and nonsmooth cases. This relationship is established in terms of derivatives in
the smooth case and through viscosity solutions when the value function is not smooth,
with economic interpretations related to the adjoint variables.
In the second part, we apply a numerical method based on the Jacobi spectral method
(JSM) to solve the nonlinear two-point boundary value problems (TPBVPs) derived from
the maximum principle. These problems are then transferred into a system of algebraic
equations to determine the open-loop Nash equilibrium (OLNE) for nonzero-sum differential
games. Illustrative examples are presented to demonstrate the effectiveness and
validity of the proposed method.Note de contenu : Sommaire
1 An Overview of Differential Games Theory 4
1.1 Optimal Control Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.2 Approaches to Solving Optimal Control Problem . . . . . . . . . . . . . . 6
1.2 Basic Notions of Game Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.1 Game Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.2 Strategic-Form Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.3 Nash Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Differential Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.2 Information Structures and Strategies . . . . . . . . . . . . . . . . . . . . . 13
1.3.3 Linear Quadratic Differential Games (LQDGs) . . . . . . . . . . . . . . . . 14
2 A Connection Between the Adjoint Variables and Value Function for Differential
Games 16
2.1 Formulation of the Game Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.1 Maximum Principle (MP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.2 Dynamic Programming Principle (DPP) . . . . . . . . . . . . . . . . . . . . 19
2.2 The Connection Between MP and DPP : Smooth Case . . . . . . . . . . . . . . . . 21
2.3 The Connection Between MP and DPP : Nonsmooth Case . . . . . . . . . . . . . . 23
3 Applications To Economic 30
3.1 Producer-Consumer Game with Sticky Price . . . . . . . . . . . . . . . . . . . . . 30
3.1.1 Formulation of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 The Connection Between MP and DPP . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.1 Smooth Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.2 Nonsmooth Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4 Jacobi Spectral Method for Solving Differential Games 37
4.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Jacobi Spectral Method for Nonzero-sum Differential Games . . . . . . . . . . . . 39
4.3 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Conclusion 56
Bibliography 60Côte titre : DM/0212 Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité DM/0212 DM/0212 Thèse Bibliothèque des sciences Anglais Disponible
Disponible

