Titre : |
Fundamentals of laser optoelectronics |
Type de document : |
texte imprimé |
Auteurs : |
S. L. Chin, Auteur |
Editeur : |
Singapore : World scientific |
Année de publication : |
1989 |
Collection : |
Series in optics and photonics, ISSN 0217-9911 num. 1 |
Importance : |
1 vol (362 p.) |
Format : |
23 cm |
ISBN/ISSN/EAN : |
978-981-02-0072-5 |
Note générale : |
Notes bibliogr. Index |
Langues : |
Anglais (eng) |
Catégories : |
Physique
|
Mots-clés : |
Optoélectronique
Physique de la lumière |
Index. décimale : |
535 Lumière, phénomènes de l'infrarouge et de l'ultraviolet optique |
Résumé : |
Ce livre est basé sur un cours donné par l'auteur à des étudiants de troisième et quatrième années de physique, de génie physique et de génie électrique. L’objectif est d’introduire et d’expliquer certains des principes fondamentaux du contrôle du faisceau laser en optoélectronique, en particulier ceux relatifs à l’anisotropie optique qui est au cœur de nombreux dispositifs optiques. Le contenu du livre est dispersé dans de nombreuses sources et il ne semble pas exister de source unique disponible au premier cycle. C'est pourquoi le présent livre est écrit. Le livre tente de donner au lecteur les bases nécessaires au travail dans un laboratoire laser, optoélectronique ou photonique, de sorte que l’utilisation des équipements et le contrôle des faisceaux laser puissent être maîtrisés sans difficulté. |
Note de contenu : |
CONTENTS
PREFACE
ACKNOWLEDGEMENTS
INTRODUCTION
CHAPTER I MAXWELL'S EQUATIONS, WAVE EQUATION AND WAVES: A REVIEW
§1.1 A pictorial view of E-M waves
§1.2 Wave equation and plane waves
§1.3 Spherical waves
§1.4 Wave vector, phase velocity, group velocity
CHAPTER II THE LASER
§2.1 Definition of laser oscillator
§2.2 Stimulated emission
§2.3 Level broadening
§2.4 Consequence of broadening
§2.5 Impossibility of having gain (i.e. α(vℓ) < 0) in a two level system in thermal equilibrium
§2.6 Pumping
§2.7 Rate Equations Approach
(a) Idealized three level system
(b) Idealized 4 - level system
§2.8 Threshold Oscillation
§2.9 Threshold pump power
§2.10 Above threshold oscillation and gain saturation
§2.11 Output power calculation
(A) Single pass amplification
(B) Oscillation
CHAPTER III SNELL'S LAW, FRESNEL EQUATIONS, BREWSTER ANGLE AND CRITICAL ANGLE
§3.1 Reflection and refraction at boundaries
§3.2 Taking advantage of the Brewster angle and the features of the reflectance and transmittance
§3.3 Critical angle and total internal reflection
§3.4 Demonstration of some important results of the Fresnel equations
§3.5 Making good use of the evanescent field
CHAPTER IV RESONATOR, A GEOMETRICAL VIEW
§4.1 Introduction
§4.2 General considerations
§4.3 Case of one lens
§4.4 Case of two lenses and equivalence to one round trip in the cavity
§4.5 General case of a biperiodic lens series and the condition far a stable resonator
CHAPTER V PARAXIAL GAUSSIAN WAVE PROPAGATION AND MODES
S5.1 Definition: Spherical wave
§5.2 Definition: Gaussian amplitude variation of a wavefront
§5.3 Definition: Gaussian Spherical laser beam
§5.5 Propagation of a Gaussian plane wave
§5.6 Propagation of a general Gaussian spherical wavefront
§5.7 Propagation of a Gaussian spherical wavefront through a thin lens
§5.8 Focal spot size
§5.9 Modes
§5.10 Spatial-temporal modes
CHAPTER VI OPTICAL ANISOTROPY IN A LOSSLESS MEDIUM
§6.1 Optical anisotropy
§6.2 Electromaqnetic wave interaction with an anisotropic medium (general considerations)
§6.3 Classification of anisotropic material optically
§6.4 Double refraction at a boundary
§6.5 Conical emission from a biaxial crystal
§6.6 Physical discussion
CHAPTER VII POLARIZATION, ITS MANIPULATION AND JONES VECTORS
§7.1 Superposition of E-M waves
§7.2 Linear polarization
§7.3 Circular polarization
§7.4 General or elliptic polarization
§7.5 Some comments on the sense of rotation of circular and elliptical polarization
§7.6 Anisotropic material as polarizer
§7.7 Wave plates and wave retarders
§7.8 Jones vectors
§7.9 Propagation through wave plates usim Jones matrix formalism
§7.10 The power of crossed polarisers
CHAPTER VIII ELECTRIC FIELD INDUCED ANISOTROPY: ELECTRO-OPTICS AND Q-SWITCHING
§8.1 Electric field induced anisotropy
§8.2 Linear electro-optic effect: Pockels effect
§8.3 Application to electrical modulation of light waves: electro-optic modulator
§8.4 Quadratic electrp-optic effect
§8.5 Electro-optical shutter: short laser pulse slicer and Q-switching lasers
(A) Passive Q-switching
(B) Quarter Wave Voltage Q-switchinq
(c) Half-wave Voltage Q-switchinq
(D) Other Q-switchinq techniques
§8.6 Transverse biasing of E - O crystal
§8.7 Closing remark
CHAPTER IX MECHANICAL FORCE INDUCED ANISOTROPY AND ACOUSTO-OPTICS
§9.1 The strain matrix
§9.2 Mechanically induced anisotropy
§9.3 Fundamentals of acousto-optic interaction
§9.4 Diffraction by an acoustic wave in an anisotropic medium
§9.5 Higher order diffraction by an acoustic wave
§9.6 Closing remarks
CHAPTER X MAGNETIC FIELD INDUCED ANISOTROPY
§10.1 Optical activity
§10.2 Faraday rotation
§10.3 Discussion
CHAPTER XI IMPORTANCE OF ANISOTROPY IN SECOND HARMONIC GENERATION (SHG)
§11.1 Introduction
§11.2 Second harmonic generation (SHG)
§11.3 Phase matching
CHAPTER XII SHORT LASER PULSE GENERATION-A REVIEW
Short laser pulse generation: part one
Short laser pulse generation: part two
An electro-optical technique to vary continuously a laser pulse
APPENDIX
2 Laser Beam Transport
INDEX |
Côte titre : |
Fs/0346 |
Fundamentals of laser optoelectronics [texte imprimé] / S. L. Chin, Auteur . - Singapore : World scientific, 1989 . - 1 vol (362 p.) ; 23 cm. - ( Series in optics and photonics, ISSN 0217-9911; 1) . ISBN : 978-981-02-0072-5 Notes bibliogr. Index Langues : Anglais ( eng)
Catégories : |
Physique
|
Mots-clés : |
Optoélectronique
Physique de la lumière |
Index. décimale : |
535 Lumière, phénomènes de l'infrarouge et de l'ultraviolet optique |
Résumé : |
Ce livre est basé sur un cours donné par l'auteur à des étudiants de troisième et quatrième années de physique, de génie physique et de génie électrique. L’objectif est d’introduire et d’expliquer certains des principes fondamentaux du contrôle du faisceau laser en optoélectronique, en particulier ceux relatifs à l’anisotropie optique qui est au cœur de nombreux dispositifs optiques. Le contenu du livre est dispersé dans de nombreuses sources et il ne semble pas exister de source unique disponible au premier cycle. C'est pourquoi le présent livre est écrit. Le livre tente de donner au lecteur les bases nécessaires au travail dans un laboratoire laser, optoélectronique ou photonique, de sorte que l’utilisation des équipements et le contrôle des faisceaux laser puissent être maîtrisés sans difficulté. |
Note de contenu : |
CONTENTS
PREFACE
ACKNOWLEDGEMENTS
INTRODUCTION
CHAPTER I MAXWELL'S EQUATIONS, WAVE EQUATION AND WAVES: A REVIEW
§1.1 A pictorial view of E-M waves
§1.2 Wave equation and plane waves
§1.3 Spherical waves
§1.4 Wave vector, phase velocity, group velocity
CHAPTER II THE LASER
§2.1 Definition of laser oscillator
§2.2 Stimulated emission
§2.3 Level broadening
§2.4 Consequence of broadening
§2.5 Impossibility of having gain (i.e. α(vℓ) < 0) in a two level system in thermal equilibrium
§2.6 Pumping
§2.7 Rate Equations Approach
(a) Idealized three level system
(b) Idealized 4 - level system
§2.8 Threshold Oscillation
§2.9 Threshold pump power
§2.10 Above threshold oscillation and gain saturation
§2.11 Output power calculation
(A) Single pass amplification
(B) Oscillation
CHAPTER III SNELL'S LAW, FRESNEL EQUATIONS, BREWSTER ANGLE AND CRITICAL ANGLE
§3.1 Reflection and refraction at boundaries
§3.2 Taking advantage of the Brewster angle and the features of the reflectance and transmittance
§3.3 Critical angle and total internal reflection
§3.4 Demonstration of some important results of the Fresnel equations
§3.5 Making good use of the evanescent field
CHAPTER IV RESONATOR, A GEOMETRICAL VIEW
§4.1 Introduction
§4.2 General considerations
§4.3 Case of one lens
§4.4 Case of two lenses and equivalence to one round trip in the cavity
§4.5 General case of a biperiodic lens series and the condition far a stable resonator
CHAPTER V PARAXIAL GAUSSIAN WAVE PROPAGATION AND MODES
S5.1 Definition: Spherical wave
§5.2 Definition: Gaussian amplitude variation of a wavefront
§5.3 Definition: Gaussian Spherical laser beam
§5.5 Propagation of a Gaussian plane wave
§5.6 Propagation of a general Gaussian spherical wavefront
§5.7 Propagation of a Gaussian spherical wavefront through a thin lens
§5.8 Focal spot size
§5.9 Modes
§5.10 Spatial-temporal modes
CHAPTER VI OPTICAL ANISOTROPY IN A LOSSLESS MEDIUM
§6.1 Optical anisotropy
§6.2 Electromaqnetic wave interaction with an anisotropic medium (general considerations)
§6.3 Classification of anisotropic material optically
§6.4 Double refraction at a boundary
§6.5 Conical emission from a biaxial crystal
§6.6 Physical discussion
CHAPTER VII POLARIZATION, ITS MANIPULATION AND JONES VECTORS
§7.1 Superposition of E-M waves
§7.2 Linear polarization
§7.3 Circular polarization
§7.4 General or elliptic polarization
§7.5 Some comments on the sense of rotation of circular and elliptical polarization
§7.6 Anisotropic material as polarizer
§7.7 Wave plates and wave retarders
§7.8 Jones vectors
§7.9 Propagation through wave plates usim Jones matrix formalism
§7.10 The power of crossed polarisers
CHAPTER VIII ELECTRIC FIELD INDUCED ANISOTROPY: ELECTRO-OPTICS AND Q-SWITCHING
§8.1 Electric field induced anisotropy
§8.2 Linear electro-optic effect: Pockels effect
§8.3 Application to electrical modulation of light waves: electro-optic modulator
§8.4 Quadratic electrp-optic effect
§8.5 Electro-optical shutter: short laser pulse slicer and Q-switching lasers
(A) Passive Q-switching
(B) Quarter Wave Voltage Q-switchinq
(c) Half-wave Voltage Q-switchinq
(D) Other Q-switchinq techniques
§8.6 Transverse biasing of E - O crystal
§8.7 Closing remark
CHAPTER IX MECHANICAL FORCE INDUCED ANISOTROPY AND ACOUSTO-OPTICS
§9.1 The strain matrix
§9.2 Mechanically induced anisotropy
§9.3 Fundamentals of acousto-optic interaction
§9.4 Diffraction by an acoustic wave in an anisotropic medium
§9.5 Higher order diffraction by an acoustic wave
§9.6 Closing remarks
CHAPTER X MAGNETIC FIELD INDUCED ANISOTROPY
§10.1 Optical activity
§10.2 Faraday rotation
§10.3 Discussion
CHAPTER XI IMPORTANCE OF ANISOTROPY IN SECOND HARMONIC GENERATION (SHG)
§11.1 Introduction
§11.2 Second harmonic generation (SHG)
§11.3 Phase matching
CHAPTER XII SHORT LASER PULSE GENERATION-A REVIEW
Short laser pulse generation: part one
Short laser pulse generation: part two
An electro-optical technique to vary continuously a laser pulse
APPENDIX
2 Laser Beam Transport
INDEX |
Côte titre : |
Fs/0346 |
|  |