| 
			 
					| Titre : | Quantum mechanics : Foundations and applications |  
					| Type de document : | texte imprimé |  
					| Auteurs : | Arno Bohm ; M. Loewe |  
					| Mention d'édition : | 3e éd. |  
					| Editeur : | New York : Springer-Verlag |  
					| Année de publication : | 1993 |  
					| Importance : | 1 vol (688 p.) |  
					| Présentation : | ill. |  
					| Format : | 24 cm |  
					| ISBN/ISSN/EAN : | 978-3-540-97944-9 |  
					| Note générale : | "Springer study edition" on back cover of 2001 paperback printing |  
					| Catégories : | Physique 
 |  
					| Mots-clés : | Théorie quantique |  
					| Index. décimale : | 530.12 Mécanique quantique |  
					| Résumé : | Cette édition diffère de la deuxième par l'addition de près de 100 pages consacrées à la phase quantique (ou géométrique, ou Berry), un sujet qui n'existait pas lors de la rédaction de ce livre. Les changements dans le reste du livre consistent en des corrections d'un petit nombre de fautes d'impression. Alors qu'il peut sembler que l'ajout de deux chapitres sur la phase quantique surestime un sujet actuellement à la mode, ils complètent réellement le développement de la théorie quantique comme indiqué dans ce livre. Nous commençons avec des modèles simples, les synthétisant en "molécules" compliquées. Avec les nouveaux chapitres, nous terminons par des «molécules» compliquées, en les divisant en parties plus simples. Ce processus de division d'un système complexe en parties donne tout naturellement naissance à une théorie de jauge dont la phase géométrique est une manifestation - avec des conséquences non seulement théoriques, mais observables expérimentalement. Pour cette raison, la phase géométrique n'est pas une simple mode, mais une découverte qui conservera son importance pour toujours et qui doit être discutée dans les manuels de mécanique quantique. Je voudrais remercier Mark Loewe pour son aide et ses conseils pour l'écriture et la nouvelle partie du livre. En outre, je voudrais exprimer ma gratitude à J. Anandan, M. Berry et C.A. Mead, qui a lu des parties ou tout le nouveau matériel et ont fourni de précieux conseils.
 |  
					| Note de contenu : | Sommaire
 Preface to the Third Edition vii
 Preface to the Second Edition ix
 Acknowledgments xiii
 CHAPTER I
 Mathematical Preliminaries 1
 1.1 The Mathematical Language of Quantum Mechanics 1
 1.2 Linear Spaces, Scalar Product 2
 1.3 Linear Operators 5
 1.4 Basis Systems and Eigenvector Decomposition 8
 1.5 Realizations of Operators and of Linear Spaces 18
 1.6 Hermite Polynomials as an Example of Orthonormal Basis Functions 28
 Appendix to Section 1.6 31
 1.7 Continuous Functionals 33
 1.8 How the Mathematical Quantities Will Be Used 39
 Problems 39
 CHAPTER II
 Foundations of Quantum Mechanics—The Harmonic Oscillator 43
 II. 1 Introduction 43
 11.2 The First Postulate of Quantum Mechanics 44
 11.3 Algebra of the Harmonic Oscillator 50
 11.4 The Relation Between Experimental Data and Quantum-Mechanical
 Observables 54
 11.5 The Basic Assumptions Applied to the Harmonic Oscillator, and
 Some Historical Remarks 74
 11.6 Some General Consequences of the Basic Assumptions of Quantum
 Mechanics 81
 11.7 Eigenvectors of Position and Momentum Operators; the Wave
 Functions of the Harmonic Oscillator 84
 xv
 xvi Contents
 11.8 Postulates II and III for Observables with Continuous Spectra 94
 11.9 Position and Momentum Measurements—Particles and Waves 101
 Problems 112
 CHAPTER III
 Energy Spectra of Some Molecules 117
 ULI Transitions Between Energy Levels of Vibrating Molecules—
 The Limitations of the Oscillator Model 117
 111.2 The Rigid Rotator 128
 111.3 The Algebra of Angular Momentum 132
 111.4 Rotation Spectra 138
 111.5 Combination of Quantum Physical Systems—The Vibrating Rotator 146
 Problems 155
 CHAPTER IV
 Complete Systems of Commuting Observables 159
 CHAPTER V
 Addition of Angular Momenta—The Wigner-Eckart Theorem 164
 V.l Introduction—The Elementary Rotator 164
 V.2 Combination of Elementary Rotators 165
 V.3 Tensor Operators and the Wigner-Eckart Theorem 176
 Appendix to Section V.3 181
 V.4 Parity 192
 Problem 204
 CHAPTER VI
 Hydrogen Atom—The Quantum-Mechanical Kepler Problem 205
 VI. 1 Introduction 20
 Contents xvii
 CHAPTER IX
 Electron Spin 253
 IX. 1 Introduction 253
 IX.2 The Fine Structure—Qualitative Considerations 255
 IX.3 Fine-Structure Interaction 261
 IX.4 Fine Structure of Atomic Spectra 268
 IX.5 Selection Rules 270
 IX.6 Remarks on the State of an Electron in Atoms 271
 Problems 272
 CHAPTER X
 Indistinguishable Particles 274
 X.l Introduction 274
 Problem 281
 CHAPTER XI
 Two-Electron Systems—The Helium Atom 282
 XI. 1 The Two Antisymmetric Subspaces of the Helium Atom 282
 XI.2 Discrete Energy Levels of Helium 287
 XI.3 Selection Rules and Singlet-Triplet Mixing for the Helium Atom 297
 XI.4 Doubly Excited States of Helium
 30 3
 Problems
 30 9
 CHAPTER XII
 Time Evolution 310
 XII.1 Time Evolution
 31 °
 XII.A Mathematical Appendix: Definitions and Properties of Operators
 that Depend upon a Parameter 324
 Problems 326
 CHAPTER XIII
 Some Fundamental Properties of Quantum Mechanics 328
 XIII. 1 Change of the State by the Dynamical Law and by the
 Measuring Process—The Stern-Gerlach Experiment 328
 Appendix to Section XIII. 1 340
 ХШ.2 Spin Correlations in a Singlet State 342
 XIII.3 Bell's Inequalities, Hidden Variables, and the Einstein-PodolskyRosen
 Paradox 347
 Problems 354
 CHAPTER XIV
 Transitions in Quantum Physical Systems—Cross Section 356
 XIV. 1 Introduction 356
 XIV.2 Transition Probabilities and Transition Rates 358
 XIV.3 Cross Sections 362
 XIV.4 The Relation of Cross Sections to the Fundamental Physical
 Observables 365
 XIV.5 Derivation of Cross-Section Formulas for the Scattering of
 a Beam off a Fixed Target 368
 Problems 384
 xviii Contents
 CHAPTER XV
 Formal Scattering Theory and Other Theoretical Considerations 387
 XV. 1 The Lippman-Schwinger Equation 387
 XV.2 In-States and Out-States 391
 XV. 3 The S-Operator and the Meiler Wave Operators 399
 XV.A Appendix 407
 CHAPTER XVI
 Elastic and Inelastic Scattering for Spherically Symmetric
 Interactions
 XVI. 1 Partial-Wave Expansion
 XVI.2 Unitarity and Phase Shifts
 XVI. 3 Argand Diagrams
 Problems
 409
 409
 417
 422
 424
 CHAPTER XVII
 Free and Exact Radial Wave Functions 425
 XVII. 1 Introduction 425
 XVII.2 The Radial Wave Equation 426
 XVII.3 The Free Radial Wave Function 430
 XVII.4 The Exact Radial Wave Function 432
 XVII.5 Poles and Bound States 439
 XVII.6 Survey of Some General Properties of Scattering Amplitudes and
 Phase Shifts 441
 XVII.A Mathematical Appendix on Analytic Functions 444
 Problems 450
 CHAPTER XVIII
 Resonance Phenomena 452
 XVIII. 1 Introduction 452
 XVIII.2 Time Delay and Phase Shifts 457
 XVIII.3 Causality Conditions 464
 XVIII.4 Causality and Analyticity 467
 XVIII.5 Brief Description of the Analyticity Properties of the S-Matrix 471
 XVIII.6 Resonance Scattering—Breit-Wigner Formula for Elastic Scattering 476
 XVIII.7 The Physical Effect of a Virtual State 487
 XVIII.8 Argand Diagrams for Elastic Resonances and Phase-Shift Analysis 489
 XVIII.9 Comparison with the Observed Cross Section: The Effect of
 Background and Finite Energy Resolution 493
 Problems 503
 CHAPTER XIX
 Time Reversal 505
 XIX. 1 Space-Inversion Invariance and the Properties of the S-Matrix 505
 XIX.2 Time Reversal 507
 Appendix to Section XIX.2 511
 XIX.3 Time-Reversal Invariance and the Properties of the S-Matrix 512
 Problems 516
 Contents XIX
 CHAPTER XX
 Resonances in Multichannel Systems 517
 XX. 1 Introduction 517
 XX.2 Single and Double Resonances 518
 XX.3 Argand Diagrams for Inelastic Resonances 532
 CHAPTER XXI
 The Decay of Unstable Physical Systems 537
 XXI. 1 Introduction 537
 XXI.2 Lifetime and Decay Rate 539
 XXI.3 The Description of a Decaying State and the Exponential Decay Law 542
 XXI.4 Gamow Vectors and Their Association to the Resonance Poles of the
 S-Matrix 549
 XXI.5 The Golden Rule 563
 XXI.6 Partial Decay Rates 567
 Problems 569
 CHAPTER XXII
 Quantal Phase Factors and Their Consequences 571
 XXII. 1 Introduction 571
 XXII.2 A Quantum Physical System in a Slowly Changing
 Environment 573
 XXII.3 A Spinning Quantum System in a Slowly Changing External
 Magnetic Field—The Adiabatic Approximation 587
 XXII.4 A Spinning Quantum System in a Precessing External Magnetic
 Field—The General Cyclic Evolution 598
 Problems 614
 CHAPTER XXIII
 A Quantum Physical System in a Quantum Environment—The Gauge
 Theory of Molecular Physics 617
 XXIII. 1 Introduction 617
 XXIII.2 The Hamiltonian of the Diatomic Molecule 618
 XXIII.3 The Born-Oppenheimer Method 623
 XXIII.4 Gauge Theories 631
 XXIII.5 The Gauge Theory of Molecular Physics 636
 XXIII.6 The Electronic States of Diatomic Molecules 643
 XXIII.7 The Monopole of the Diatomic Molecule 645
 Problems 658
 Epilogue 661
 Bibliography 664
 Index 669
 |  
					| Côte titre : | Fs/0233-0234 | 
Quantum mechanics : Foundations and applications [texte imprimé] / Arno Bohm  ; M. Loewe   . -  3e éd. . - New York : Springer-Verlag , 1993 . - 1 vol (688 p.) : ill. ; 24 cm.ISBN  : 978-3-540-97944-9 "Springer study edition" on back cover of 2001 paperback printing  
					| Catégories : | Physique 
 |  
					| Mots-clés : | Théorie quantique |  
					| Index. décimale : | 530.12 Mécanique quantique |  
					| Résumé : | Cette édition diffère de la deuxième par l'addition de près de 100 pages consacrées à la phase quantique (ou géométrique, ou Berry), un sujet qui n'existait pas lors de la rédaction de ce livre. Les changements dans le reste du livre consistent en des corrections d'un petit nombre de fautes d'impression. Alors qu'il peut sembler que l'ajout de deux chapitres sur la phase quantique surestime un sujet actuellement à la mode, ils complètent réellement le développement de la théorie quantique comme indiqué dans ce livre. Nous commençons avec des modèles simples, les synthétisant en "molécules" compliquées. Avec les nouveaux chapitres, nous terminons par des «molécules» compliquées, en les divisant en parties plus simples. Ce processus de division d'un système complexe en parties donne tout naturellement naissance à une théorie de jauge dont la phase géométrique est une manifestation - avec des conséquences non seulement théoriques, mais observables expérimentalement. Pour cette raison, la phase géométrique n'est pas une simple mode, mais une découverte qui conservera son importance pour toujours et qui doit être discutée dans les manuels de mécanique quantique. Je voudrais remercier Mark Loewe pour son aide et ses conseils pour l'écriture et la nouvelle partie du livre. En outre, je voudrais exprimer ma gratitude à J. Anandan, M. Berry et C.A. Mead, qui a lu des parties ou tout le nouveau matériel et ont fourni de précieux conseils.
 |  
					| Note de contenu : | Sommaire
 Preface to the Third Edition vii
 Preface to the Second Edition ix
 Acknowledgments xiii
 CHAPTER I
 Mathematical Preliminaries 1
 1.1 The Mathematical Language of Quantum Mechanics 1
 1.2 Linear Spaces, Scalar Product 2
 1.3 Linear Operators 5
 1.4 Basis Systems and Eigenvector Decomposition 8
 1.5 Realizations of Operators and of Linear Spaces 18
 1.6 Hermite Polynomials as an Example of Orthonormal Basis Functions 28
 Appendix to Section 1.6 31
 1.7 Continuous Functionals 33
 1.8 How the Mathematical Quantities Will Be Used 39
 Problems 39
 CHAPTER II
 Foundations of Quantum Mechanics—The Harmonic Oscillator 43
 II. 1 Introduction 43
 11.2 The First Postulate of Quantum Mechanics 44
 11.3 Algebra of the Harmonic Oscillator 50
 11.4 The Relation Between Experimental Data and Quantum-Mechanical
 Observables 54
 11.5 The Basic Assumptions Applied to the Harmonic Oscillator, and
 Some Historical Remarks 74
 11.6 Some General Consequences of the Basic Assumptions of Quantum
 Mechanics 81
 11.7 Eigenvectors of Position and Momentum Operators; the Wave
 Functions of the Harmonic Oscillator 84
 xv
 xvi Contents
 11.8 Postulates II and III for Observables with Continuous Spectra 94
 11.9 Position and Momentum Measurements—Particles and Waves 101
 Problems 112
 CHAPTER III
 Energy Spectra of Some Molecules 117
 ULI Transitions Between Energy Levels of Vibrating Molecules—
 The Limitations of the Oscillator Model 117
 111.2 The Rigid Rotator 128
 111.3 The Algebra of Angular Momentum 132
 111.4 Rotation Spectra 138
 111.5 Combination of Quantum Physical Systems—The Vibrating Rotator 146
 Problems 155
 CHAPTER IV
 Complete Systems of Commuting Observables 159
 CHAPTER V
 Addition of Angular Momenta—The Wigner-Eckart Theorem 164
 V.l Introduction—The Elementary Rotator 164
 V.2 Combination of Elementary Rotators 165
 V.3 Tensor Operators and the Wigner-Eckart Theorem 176
 Appendix to Section V.3 181
 V.4 Parity 192
 Problem 204
 CHAPTER VI
 Hydrogen Atom—The Quantum-Mechanical Kepler Problem 205
 VI. 1 Introduction 20
 Contents xvii
 CHAPTER IX
 Electron Spin 253
 IX. 1 Introduction 253
 IX.2 The Fine Structure—Qualitative Considerations 255
 IX.3 Fine-Structure Interaction 261
 IX.4 Fine Structure of Atomic Spectra 268
 IX.5 Selection Rules 270
 IX.6 Remarks on the State of an Electron in Atoms 271
 Problems 272
 CHAPTER X
 Indistinguishable Particles 274
 X.l Introduction 274
 Problem 281
 CHAPTER XI
 Two-Electron Systems—The Helium Atom 282
 XI. 1 The Two Antisymmetric Subspaces of the Helium Atom 282
 XI.2 Discrete Energy Levels of Helium 287
 XI.3 Selection Rules and Singlet-Triplet Mixing for the Helium Atom 297
 XI.4 Doubly Excited States of Helium
 30 3
 Problems
 30 9
 CHAPTER XII
 Time Evolution 310
 XII.1 Time Evolution
 31 °
 XII.A Mathematical Appendix: Definitions and Properties of Operators
 that Depend upon a Parameter 324
 Problems 326
 CHAPTER XIII
 Some Fundamental Properties of Quantum Mechanics 328
 XIII. 1 Change of the State by the Dynamical Law and by the
 Measuring Process—The Stern-Gerlach Experiment 328
 Appendix to Section XIII. 1 340
 ХШ.2 Spin Correlations in a Singlet State 342
 XIII.3 Bell's Inequalities, Hidden Variables, and the Einstein-PodolskyRosen
 Paradox 347
 Problems 354
 CHAPTER XIV
 Transitions in Quantum Physical Systems—Cross Section 356
 XIV. 1 Introduction 356
 XIV.2 Transition Probabilities and Transition Rates 358
 XIV.3 Cross Sections 362
 XIV.4 The Relation of Cross Sections to the Fundamental Physical
 Observables 365
 XIV.5 Derivation of Cross-Section Formulas for the Scattering of
 a Beam off a Fixed Target 368
 Problems 384
 xviii Contents
 CHAPTER XV
 Formal Scattering Theory and Other Theoretical Considerations 387
 XV. 1 The Lippman-Schwinger Equation 387
 XV.2 In-States and Out-States 391
 XV. 3 The S-Operator and the Meiler Wave Operators 399
 XV.A Appendix 407
 CHAPTER XVI
 Elastic and Inelastic Scattering for Spherically Symmetric
 Interactions
 XVI. 1 Partial-Wave Expansion
 XVI.2 Unitarity and Phase Shifts
 XVI. 3 Argand Diagrams
 Problems
 409
 409
 417
 422
 424
 CHAPTER XVII
 Free and Exact Radial Wave Functions 425
 XVII. 1 Introduction 425
 XVII.2 The Radial Wave Equation 426
 XVII.3 The Free Radial Wave Function 430
 XVII.4 The Exact Radial Wave Function 432
 XVII.5 Poles and Bound States 439
 XVII.6 Survey of Some General Properties of Scattering Amplitudes and
 Phase Shifts 441
 XVII.A Mathematical Appendix on Analytic Functions 444
 Problems 450
 CHAPTER XVIII
 Resonance Phenomena 452
 XVIII. 1 Introduction 452
 XVIII.2 Time Delay and Phase Shifts 457
 XVIII.3 Causality Conditions 464
 XVIII.4 Causality and Analyticity 467
 XVIII.5 Brief Description of the Analyticity Properties of the S-Matrix 471
 XVIII.6 Resonance Scattering—Breit-Wigner Formula for Elastic Scattering 476
 XVIII.7 The Physical Effect of a Virtual State 487
 XVIII.8 Argand Diagrams for Elastic Resonances and Phase-Shift Analysis 489
 XVIII.9 Comparison with the Observed Cross Section: The Effect of
 Background and Finite Energy Resolution 493
 Problems 503
 CHAPTER XIX
 Time Reversal 505
 XIX. 1 Space-Inversion Invariance and the Properties of the S-Matrix 505
 XIX.2 Time Reversal 507
 Appendix to Section XIX.2 511
 XIX.3 Time-Reversal Invariance and the Properties of the S-Matrix 512
 Problems 516
 Contents XIX
 CHAPTER XX
 Resonances in Multichannel Systems 517
 XX. 1 Introduction 517
 XX.2 Single and Double Resonances 518
 XX.3 Argand Diagrams for Inelastic Resonances 532
 CHAPTER XXI
 The Decay of Unstable Physical Systems 537
 XXI. 1 Introduction 537
 XXI.2 Lifetime and Decay Rate 539
 XXI.3 The Description of a Decaying State and the Exponential Decay Law 542
 XXI.4 Gamow Vectors and Their Association to the Resonance Poles of the
 S-Matrix 549
 XXI.5 The Golden Rule 563
 XXI.6 Partial Decay Rates 567
 Problems 569
 CHAPTER XXII
 Quantal Phase Factors and Their Consequences 571
 XXII. 1 Introduction 571
 XXII.2 A Quantum Physical System in a Slowly Changing
 Environment 573
 XXII.3 A Spinning Quantum System in a Slowly Changing External
 Magnetic Field—The Adiabatic Approximation 587
 XXII.4 A Spinning Quantum System in a Precessing External Magnetic
 Field—The General Cyclic Evolution 598
 Problems 614
 CHAPTER XXIII
 A Quantum Physical System in a Quantum Environment—The Gauge
 Theory of Molecular Physics 617
 XXIII. 1 Introduction 617
 XXIII.2 The Hamiltonian of the Diatomic Molecule 618
 XXIII.3 The Born-Oppenheimer Method 623
 XXIII.4 Gauge Theories 631
 XXIII.5 The Gauge Theory of Molecular Physics 636
 XXIII.6 The Electronic States of Diatomic Molecules 643
 XXIII.7 The Monopole of the Diatomic Molecule 645
 Problems 658
 Epilogue 661
 Bibliography 664
 Index 669
 |  
					| Côte titre : | Fs/0233-0234 | 
 |  |