University Sétif 1 FERHAT ABBAS Faculty of Sciences
Catégories



Titre : Advanced Engineering Mathematics : A Second Course with MatLab Type de document : document électronique Auteurs : Duffy Dean G. Editeur : Boca Raton : CRC Press Année de publication : 2022 Importance : 1 vol (447 p.) ISBN/ISSN/EAN : 978-1-00-055125-9 Langues : Français (fre) Catégories : Bibliothèque numérique:Mathématique Mots-clés : Engineering mathematics Résumé :
Through four previous editions of Advanced Engineering Mathematics with MATLAB, the author presented a wide variety of topics needed by today's engineers. The fifth edition of that book, available now, has been broken into two parts: topics currently needed in mathematics courses and a new stand-alone volume presenting topics not often included in these courses and consequently unknown to engineering students and many professionals.The overall structure of this new book consists of two parts: transform methods and random processes. Built upon a foundation of applied complex variables, the first part covers advanced transform methods, as well as z-transforms and Hilbert transforms--transforms of particular interest to systems, communication, and electrical engineers. This portion concludes with Green's function, a powerful method of analyzing systems. The second portion presents random processes--processes that more accurately model physical and biological engineering. Of particular interest is the inclusion of stochastic calculus. The author continues to offer a wealth of examples and applications from the scientific and engineering literature, a highlight of his previous books. As before, theory is presented first, then examples, and then drill problems. Answers are given in the back of the book. This book is all about the future: The purpose of this book is not only to educate the present generation of engineers but also the next.'The main strength is the text is written from an engineering perspective. The majority of my students are engineers. The physical examples are related to problems of interest to the engineering students.'--Lea Jenkins, Clemson UniversityNote de contenu :
TABLE OF CONTENTS
List of Definitions
Chapter 1: Complex Variables
Chapter 2: Transform Methods
Chapter 3: The Z-transform
Chapter 4: The Hilbert Transform
Chapter 5: Green’s Functions
Chapter 6: Probability
Chapter 7: Random Processes
Chapter 8: Itô’s Stochastic Calculus
Answers to Odd Numbered ProblemsCôte titre : E-Fs/0054 En ligne : https://sciences-courses.univ-setif.dz/login/index.php Advanced Engineering Mathematics : A Second Course with MatLab [document électronique] / Duffy Dean G. . - Boca Raton : CRC Press, 2022 . - 1 vol (447 p.).
ISBN : 978-1-00-055125-9
Langues : Français (fre)
Catégories : Bibliothèque numérique:Mathématique Mots-clés : Engineering mathematics Résumé :
Through four previous editions of Advanced Engineering Mathematics with MATLAB, the author presented a wide variety of topics needed by today's engineers. The fifth edition of that book, available now, has been broken into two parts: topics currently needed in mathematics courses and a new stand-alone volume presenting topics not often included in these courses and consequently unknown to engineering students and many professionals.The overall structure of this new book consists of two parts: transform methods and random processes. Built upon a foundation of applied complex variables, the first part covers advanced transform methods, as well as z-transforms and Hilbert transforms--transforms of particular interest to systems, communication, and electrical engineers. This portion concludes with Green's function, a powerful method of analyzing systems. The second portion presents random processes--processes that more accurately model physical and biological engineering. Of particular interest is the inclusion of stochastic calculus. The author continues to offer a wealth of examples and applications from the scientific and engineering literature, a highlight of his previous books. As before, theory is presented first, then examples, and then drill problems. Answers are given in the back of the book. This book is all about the future: The purpose of this book is not only to educate the present generation of engineers but also the next.'The main strength is the text is written from an engineering perspective. The majority of my students are engineers. The physical examples are related to problems of interest to the engineering students.'--Lea Jenkins, Clemson UniversityNote de contenu :
TABLE OF CONTENTS
List of Definitions
Chapter 1: Complex Variables
Chapter 2: Transform Methods
Chapter 3: The Z-transform
Chapter 4: The Hilbert Transform
Chapter 5: Green’s Functions
Chapter 6: Probability
Chapter 7: Random Processes
Chapter 8: Itô’s Stochastic Calculus
Answers to Odd Numbered ProblemsCôte titre : E-Fs/0054 En ligne : https://sciences-courses.univ-setif.dz/login/index.php Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité E-Fs/0054 E-Fs/0054 E-Book Téléchargeable (PDF) Bibliothéque des sciences Anglais Téléchargeable
Disponible
Titre : An Introduction to Linear Algebra Type de document : document électronique Auteurs : LIU Xuan ; ZHAO Zhi ; LIU Wei-Hui ; JIN Xiao-Qing Editeur : France : EDP Sciences Année de publication : 2022 Importance : 1 vol (221p.) ISBN/ISSN/EAN : 978-2-7598-3045-9 Langues : Français (fre) Catégories : Bibliothèque numérique:Mathématique Mots-clés : Mathematical analysis
Algebras, LinearIndex. décimale : 512.5 Algèbre linéaire Résumé :
Linear algebra is a core course for science and engineering students in colleges and universities. It is one of the foundations of modern mathematics and has extensive and profound applications in physics, computer science, engineering, economics, etc. This book aims to help readers acquire the basic knowledge of linear algebra and lay the ground for further study of mathematics courses. It is intended for first-year undergraduate students in engineering, science, and other areas related to mathematics. It is also suitable for self-study. This book is organized into eight chapters and the main contents include linear equations, basic operations of matrices, determinants, vector spaces, eigenvalues and eigenvectors, linear transformations, etc. In the eighth and last chapter, the authors draw on key concepts presented in the previous chapters in the book to give an elementary proof of the recently proposed Böttcher-Wenzel conjecture. In addition, the appendix provides a preliminary discussion of the independence of the axioms of vector spaces. The book provides simple exercises for tutorials and more challenging exercises for student practice.Note de contenu :
Table of contents :
Preface
Contents
Chapter 1 Linear Systems and Matrices
Chapter 2 Determinants
Chapter 3 Euclidean Vector Spaces
Chapter 4 General Vector Spaces
Chapter 5 Inner Product Spaces
Chapter 6 Eigenvalues and Eigenvectors
Chapter 7 Linear Transformations
Chapter 8 Additional Topics
Appendix A Independence of Axioms
Bibliography
IndexCôte titre : E-Fs/0055 En ligne : https://sciences-courses.univ-setif.dz/login/index.php An Introduction to Linear Algebra [document électronique] / LIU Xuan ; ZHAO Zhi ; LIU Wei-Hui ; JIN Xiao-Qing . - [S.l.] : France : EDP Sciences, 2022 . - 1 vol (221p.).
ISBN : 978-2-7598-3045-9
Langues : Français (fre)
Catégories : Bibliothèque numérique:Mathématique Mots-clés : Mathematical analysis
Algebras, LinearIndex. décimale : 512.5 Algèbre linéaire Résumé :
Linear algebra is a core course for science and engineering students in colleges and universities. It is one of the foundations of modern mathematics and has extensive and profound applications in physics, computer science, engineering, economics, etc. This book aims to help readers acquire the basic knowledge of linear algebra and lay the ground for further study of mathematics courses. It is intended for first-year undergraduate students in engineering, science, and other areas related to mathematics. It is also suitable for self-study. This book is organized into eight chapters and the main contents include linear equations, basic operations of matrices, determinants, vector spaces, eigenvalues and eigenvectors, linear transformations, etc. In the eighth and last chapter, the authors draw on key concepts presented in the previous chapters in the book to give an elementary proof of the recently proposed Böttcher-Wenzel conjecture. In addition, the appendix provides a preliminary discussion of the independence of the axioms of vector spaces. The book provides simple exercises for tutorials and more challenging exercises for student practice.Note de contenu :
Table of contents :
Preface
Contents
Chapter 1 Linear Systems and Matrices
Chapter 2 Determinants
Chapter 3 Euclidean Vector Spaces
Chapter 4 General Vector Spaces
Chapter 5 Inner Product Spaces
Chapter 6 Eigenvalues and Eigenvectors
Chapter 7 Linear Transformations
Chapter 8 Additional Topics
Appendix A Independence of Axioms
Bibliography
IndexCôte titre : E-Fs/0055 En ligne : https://sciences-courses.univ-setif.dz/login/index.php Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité E-Fs/0055 E-Fs/0055 E-Book Téléchargeable (PDF) Bibliothéque des sciences Anglais Téléchargeable
Disponible
Titre : An Introduction to Metric Spaces Type de document : document électronique Auteurs : Gopal Dhananjay ; Deshmukh Aniruddha ; S. Ranadive Abhay Editeur : Boca Raton : CRC Press Année de publication : 2022 Importance : 1 vol (286 p.) ISBN/ISSN/EAN : 978-1-00-008799-4 Langues : Français (fre) Catégories : Bibliothèque numérique:Mathématique Mots-clés : Metric spaces Index. décimale : 514.3 Topologie des espaces (topologie métrique) Résumé :
This book serves as a textbook for an introductory course in metric spaces for undergraduate or graduate students. The goal is to present the basics of metric spaces in a natural and intuitive way and encourage students to think geometrically while actively participating in the learning of this subject. In this book, the authors illustrated the strategy of the proofs of various theorems that motivate readers to complete them on their own. Bits of pertinent history are infused in the text, including brief biographies of some of the central players in the development of metric spaces. The textbook is divided into seven chapters that contain the main materials on metric spaces; namely, introductory concepts, completeness, compactness, connectedness, continuous functions and metric fixed point theorems with applications.Some of the noteworthy features of this book include· Diagrammatic illustrations that encourage readers to think geometrically· Focus on systematic strategy to generate ideas for the proofs of theorems· A wealth of remarks, observations along with a variety of exercises· Historical notes and brief biographies appearing throughout the textNote de contenu :
Conten
Preface ix
A Note to the Reader xiii
Authors xv
1 Set Theory 1
1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.4 Countability of Sets . . . . . . . . . . . . . . . . . . . . . . . 39
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2 Metric Spaces 55
2.1 Review of Real Number System and Absolute Value . . . . . 55
2.2 Young, H¨older, andMinkowski Inequalities . . . . . . . . . . 57
2.3 Notion ofMetric Space . . . . . . . . . . . . . . . . . . . . . 64
2.4 Open Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.5 Closed Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
2.6 Interior, Exterior, and Boundary Points . . . . . . . . . . . . 101
2.7 Limit and Cluster Points . . . . . . . . . . . . . . . . . . . . 104
2.8 Bounded Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 110
2.9 Distance Between Sets . . . . . . . . . . . . . . . . . . . . . 112
2.10 EquivalentMetrics . . . . . . . . . . . . . . . . . . . . . . . . 115
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 125
3 Complete Metric Spaces 129
3.1 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
3.2 Convergence of Sequence . . . . . . . . . . . . . . . . . . . . 131
3.3 CompleteMetric Spaces . . . . . . . . . . . . . . . . . . . . . 139
3.4 Completion ofMetric Spaces . . . . . . . . . . . . . . . . . . 143
3.5 Baire Category Theorem . . . . . . . . . . . . . . . . . . . . 149
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4 Compact Metric Spaces 161
4.1 Open Cover and Compact Sets . . . . . . . . . . . . . . . . . 161
4.2 General Properties of Compact Sets . . . . . . . . . . . . . . 165
4.3 Sufficient Conditions for Compactness . . . . . . . . . . . . . 169
4.4 Sequential Compactness . . . . . . . . . . . . . . . . . . . . . 172
4.5 Compactness: Characterizations . . . . . . . . . . . . . . . . 174
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 180
5 Connected Spaces 183
5.1 Connectedness . . . . . . . . . . . . . . . . . . . . . . . . . . 183
5.2 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
5.3 Totally Disconnected Spaces . . . . . . . . . . . . . . . . . . 192
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
6 Continuity 195
6.1 Continuity of Real Valued Functions . . . . . . . . . . . . . . 195
6.2 Continuous Functions in ArbitraryMetric Spaces . . . . . . 197
6.3 Uniform Continuity . . . . . . . . . . . . . . . . . . . . . . . 217
6.4 Continuous Functions on Compact Spaces . . . . . . . . . . . 224
6.5 Continuous Functions on Connected Spaces . . . . . . . . . . 229
6.6 Equicontinuity and Arzela-Ascoli’s Theorem . . . . . . . . . 242
6.7 Open and ClosedMaps . . . . . . . . . . . . . . . . . . . . . 245
6.8 Homeomorphism . . . . . . . . . . . . . . . . . . . . . . . . . 246
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 252
7 Banach Fixed Point Theorem and Its Applications 255
7.1 Banach Contraction Theorem . . . . . . . . . . . . . . . . . 255
7.2 Applications of Banach Contraction Principle . . . . . . . . . 260
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 276
Appendix A 277
Bibliography 281
Index 283
Côte titre : E-Fs/0056 En ligne : https://sciences-courses.univ-setif.dz/login/index.php An Introduction to Metric Spaces [document électronique] / Gopal Dhananjay ; Deshmukh Aniruddha ; S. Ranadive Abhay . - Boca Raton : CRC Press, 2022 . - 1 vol (286 p.).
ISBN : 978-1-00-008799-4
Langues : Français (fre)
Catégories : Bibliothèque numérique:Mathématique Mots-clés : Metric spaces Index. décimale : 514.3 Topologie des espaces (topologie métrique) Résumé :
This book serves as a textbook for an introductory course in metric spaces for undergraduate or graduate students. The goal is to present the basics of metric spaces in a natural and intuitive way and encourage students to think geometrically while actively participating in the learning of this subject. In this book, the authors illustrated the strategy of the proofs of various theorems that motivate readers to complete them on their own. Bits of pertinent history are infused in the text, including brief biographies of some of the central players in the development of metric spaces. The textbook is divided into seven chapters that contain the main materials on metric spaces; namely, introductory concepts, completeness, compactness, connectedness, continuous functions and metric fixed point theorems with applications.Some of the noteworthy features of this book include· Diagrammatic illustrations that encourage readers to think geometrically· Focus on systematic strategy to generate ideas for the proofs of theorems· A wealth of remarks, observations along with a variety of exercises· Historical notes and brief biographies appearing throughout the textNote de contenu :
Conten
Preface ix
A Note to the Reader xiii
Authors xv
1 Set Theory 1
1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.4 Countability of Sets . . . . . . . . . . . . . . . . . . . . . . . 39
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2 Metric Spaces 55
2.1 Review of Real Number System and Absolute Value . . . . . 55
2.2 Young, H¨older, andMinkowski Inequalities . . . . . . . . . . 57
2.3 Notion ofMetric Space . . . . . . . . . . . . . . . . . . . . . 64
2.4 Open Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.5 Closed Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
2.6 Interior, Exterior, and Boundary Points . . . . . . . . . . . . 101
2.7 Limit and Cluster Points . . . . . . . . . . . . . . . . . . . . 104
2.8 Bounded Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 110
2.9 Distance Between Sets . . . . . . . . . . . . . . . . . . . . . 112
2.10 EquivalentMetrics . . . . . . . . . . . . . . . . . . . . . . . . 115
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 125
3 Complete Metric Spaces 129
3.1 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
3.2 Convergence of Sequence . . . . . . . . . . . . . . . . . . . . 131
3.3 CompleteMetric Spaces . . . . . . . . . . . . . . . . . . . . . 139
3.4 Completion ofMetric Spaces . . . . . . . . . . . . . . . . . . 143
3.5 Baire Category Theorem . . . . . . . . . . . . . . . . . . . . 149
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4 Compact Metric Spaces 161
4.1 Open Cover and Compact Sets . . . . . . . . . . . . . . . . . 161
4.2 General Properties of Compact Sets . . . . . . . . . . . . . . 165
4.3 Sufficient Conditions for Compactness . . . . . . . . . . . . . 169
4.4 Sequential Compactness . . . . . . . . . . . . . . . . . . . . . 172
4.5 Compactness: Characterizations . . . . . . . . . . . . . . . . 174
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 180
5 Connected Spaces 183
5.1 Connectedness . . . . . . . . . . . . . . . . . . . . . . . . . . 183
5.2 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
5.3 Totally Disconnected Spaces . . . . . . . . . . . . . . . . . . 192
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
6 Continuity 195
6.1 Continuity of Real Valued Functions . . . . . . . . . . . . . . 195
6.2 Continuous Functions in ArbitraryMetric Spaces . . . . . . 197
6.3 Uniform Continuity . . . . . . . . . . . . . . . . . . . . . . . 217
6.4 Continuous Functions on Compact Spaces . . . . . . . . . . . 224
6.5 Continuous Functions on Connected Spaces . . . . . . . . . . 229
6.6 Equicontinuity and Arzela-Ascoli’s Theorem . . . . . . . . . 242
6.7 Open and ClosedMaps . . . . . . . . . . . . . . . . . . . . . 245
6.8 Homeomorphism . . . . . . . . . . . . . . . . . . . . . . . . . 246
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 252
7 Banach Fixed Point Theorem and Its Applications 255
7.1 Banach Contraction Theorem . . . . . . . . . . . . . . . . . 255
7.2 Applications of Banach Contraction Principle . . . . . . . . . 260
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 276
Appendix A 277
Bibliography 281
Index 283
Côte titre : E-Fs/0056 En ligne : https://sciences-courses.univ-setif.dz/login/index.php Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité E-Fs/0056 E-Fs/0056 E-Book Téléchargeable (PDF) Bibliothéque des sciences Anglais Téléchargeable
Disponible
Titre : Analysis-II Type de document : document électronique Auteurs : Goel Dr M.K. Editeur : Boca Raton : CRC Press Année de publication : 2023 Importance : 1 vol (215 p.) ISBN/ISSN/EAN : 978-93-94406-60-5 Langues : Français (fre) Catégories : Bibliothèque numérique:Mathématique Mots-clés : Calculus Integral Index. décimale : 515-Analyse mathèmatique Note de contenu :
Conten
1. RIEMANN INTEGRATION
2. IMPROPER INTEGRALS
3. INTEGRAL AS A FUNCTION OF A PARAMETER
4. METRIC SPACES
5. BASES, SUB-BASES AND SUBSPACES
6. CONVERGENCE OF SEQUENCES OF METRIC SPACES
7. COMPLETENESS
8. ISOMETRY AND CONTRACTION
9. CONTINUITY AND HOMEOMORPHISM
10. COMPACTNESS AND CONNECTEDNESS
Côte titre : E-Fs/0057 En ligne : https://sciences-courses.univ-setif.dz/login/index.php Analysis-II [document électronique] / Goel Dr M.K. . - Boca Raton : CRC Press, 2023 . - 1 vol (215 p.).
ISBN : 978-93-94406-60-5
Langues : Français (fre)
Catégories : Bibliothèque numérique:Mathématique Mots-clés : Calculus Integral Index. décimale : 515-Analyse mathèmatique Note de contenu :
Conten
1. RIEMANN INTEGRATION
2. IMPROPER INTEGRALS
3. INTEGRAL AS A FUNCTION OF A PARAMETER
4. METRIC SPACES
5. BASES, SUB-BASES AND SUBSPACES
6. CONVERGENCE OF SEQUENCES OF METRIC SPACES
7. COMPLETENESS
8. ISOMETRY AND CONTRACTION
9. CONTINUITY AND HOMEOMORPHISM
10. COMPACTNESS AND CONNECTEDNESS
Côte titre : E-Fs/0057 En ligne : https://sciences-courses.univ-setif.dz/login/index.php Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité E-Fs/0057 E-Fs/0057 E-Book Téléchargeable (PDF) Bibliothéque des sciences Anglais Téléchargeable
Disponible
Titre : Applied Engineering Mathematics Type de document : document électronique Auteurs : Vick Brian Editeur : Boca Raton : CRC Press Année de publication : 2020 Importance : 1 vol (231 p.) ISBN/ISSN/EAN : 978-1-00-004761-5 Langues : Français (fre) Catégories : Bibliothèque numérique:Mathématique Mots-clés : Engineering mathematics
MATHEMATICS :AppliedIndex. décimale : 510.246 2 Mathématiques pour l'ingénieur Résumé :
Undergraduate engineering students need good mathematics skills. This textbook supports this need by placing a strong emphasis on visualization and the methods and tools needed across the whole of engineering. The visual approach is emphasized, and excessive proofs and derivations are avoided. The visual images explain and teach the mathematical methods. The book's website provides dynamic and interactive codes in Mathematica to accompany the examples for the reader to explore on their own with Mathematica or the free Computational Document Format player, and it provides access for instructors to a solutions manual. Strongly emphasizes a visual approach to engineering mathematics Written for years 2 to 4 of an engineering degree course Website offers support with dynamic and interactive Mathematica code and instructor's solutions manual Brian Vick is an associate professor at Virginia Tech in the United States and is a longtime teacher and researcher. His style has been developed from teaching a variety of engineering and mathematical courses in the areas of heat transfer, thermodynamics, engineering design, computer programming, numerical analysis, and system dynamics at both undergraduate and graduate levels.eResource material is available for this title atNote de contenu :
TABLE OF CONTENTS
1. Overview
2. Physical Processes
3. Modeling of Physical Processes
4. Calculus
5. Linear Algebra
6. Non-Linear Algebraic Equations: Root Finding and Optimization
7. Introduction to Ordinary Differential Equations
8. Laplace Transforms
9. Numerical Solutions of Ordinary Differential Equations
10. First Order Ordinary Differential Equations
11. Second Order Ordinary Differential Equations
Côte titre : E-Fs/0058 En ligne : https://sciences-courses.univ-setif.dz/login/index.php Applied Engineering Mathematics [document électronique] / Vick Brian . - Boca Raton : CRC Press, 2020 . - 1 vol (231 p.).
ISBN : 978-1-00-004761-5
Langues : Français (fre)
Catégories : Bibliothèque numérique:Mathématique Mots-clés : Engineering mathematics
MATHEMATICS :AppliedIndex. décimale : 510.246 2 Mathématiques pour l'ingénieur Résumé :
Undergraduate engineering students need good mathematics skills. This textbook supports this need by placing a strong emphasis on visualization and the methods and tools needed across the whole of engineering. The visual approach is emphasized, and excessive proofs and derivations are avoided. The visual images explain and teach the mathematical methods. The book's website provides dynamic and interactive codes in Mathematica to accompany the examples for the reader to explore on their own with Mathematica or the free Computational Document Format player, and it provides access for instructors to a solutions manual. Strongly emphasizes a visual approach to engineering mathematics Written for years 2 to 4 of an engineering degree course Website offers support with dynamic and interactive Mathematica code and instructor's solutions manual Brian Vick is an associate professor at Virginia Tech in the United States and is a longtime teacher and researcher. His style has been developed from teaching a variety of engineering and mathematical courses in the areas of heat transfer, thermodynamics, engineering design, computer programming, numerical analysis, and system dynamics at both undergraduate and graduate levels.eResource material is available for this title atNote de contenu :
TABLE OF CONTENTS
1. Overview
2. Physical Processes
3. Modeling of Physical Processes
4. Calculus
5. Linear Algebra
6. Non-Linear Algebraic Equations: Root Finding and Optimization
7. Introduction to Ordinary Differential Equations
8. Laplace Transforms
9. Numerical Solutions of Ordinary Differential Equations
10. First Order Ordinary Differential Equations
11. Second Order Ordinary Differential Equations
Côte titre : E-Fs/0058 En ligne : https://sciences-courses.univ-setif.dz/login/index.php Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité E-Fs/0058 E-Fs/0058 E-Book Téléchargeable (PDF) Bibliothéque des sciences Anglais Téléchargeable
DisponiblePermalinkPermalinkPermalinkCalculus for Engineering Students : Fundamentals, Real Problems, and Computers / Jesus Martin Vaquero
![]()
PermalinkPermalinkPermalinkPermalinkPermalinkPermalinkPermalink