University Sétif 1 FERHAT ABBAS Faculty of Sciences
Détail de l'auteur
Auteur Szymon Dolecki |
Documents disponibles écrits par cet auteur



Titre : Analyse fondamentale : Espaces métriques, topologiques et normés Type de document : texte imprimé Auteurs : Szymon Dolecki, Auteur Mention d'édition : 2 Editeur : Paris : Hermann Année de publication : 2013 Collection : Collection Méthodes (Paris. 1966), ISSN 0588-2303 Importance : 1 vol. (368 p.) Présentation : ill. en noir et en coul. Format : 22 cm ISBN/ISSN/EAN : 978-2-7056-8741-0 Note générale : 978-2-7056-8741-0 Langues : Français (fre) Catégories : Mathématique Mots-clés : Espaces métriques
Espaces vectoriels
Espaces topologiques
Espaces linéaires normés
Topologie
Analyse fondamentaleIndex. décimale : 514.3 Topologie des espaces (topologie métrique) Résumé :
Ce livre d'analyse est destiné aux étudiants de troisième année de licence de mathématiques.
L'auteur traite des connaissances fondamentales sur les espaces métriques et normés, accompagnées toutefois d'informations concises sur l'histoire des concepts et sur les développements récents. Plusieurs aspects sont traités de façon originale, motivée par la recherche de l'auteur (le traitement des suites ou le calcul relationnel). Deux appendices permettent aux étudiants motivés d'approfondir quelques sujets importants (nombres ordinaux, compacité) au-delà du cadre de la licence.
Une esquisse de la théorie des ensembles consentira l'utilisation des concepts de relation et de cardinalité. Ensuite, on procède à partir d'une unique abstraction qui nous transporte du cadre des espaces euclidiens, familiers aux étudiants de la Licence 2, dans le domaine des espaces métriques, dont on étudie des classes principales (espaces séparables, compacts, complets et connexes), en découvrant des espaces universels, dont tout espace métrique (respectivement, métrique séparable) est un sous-espace, ou d'autres (ensemble de Cantor), dont tout espace métrique compact est une image continue.
L'abstraction de la structure vectorielle permet d'étudier les espaces métriques avec beaucoup plus d'aisance qu'avec des contraintes supplémentaires d'une autre structure.
On étudie ensuite les espaces vectoriels avant de les munir des métriques compatibles avec leur structure vectorielle (espaces normés) et d'y ajouter la complétude (espaces de Banach), en profitant des acquis de l'étude des espaces métriques complets. On se focalise enfin sur la classe des espaces munis de produit scalaire qui les rendent complets (espaces de Hilbert), où la notion d'orthogonalité nous approche de nos intuitions initiales des espaces euclidiens, en concluant à l'universalité (parmi les espaces de Hîlbert) de l'espace des fonctions carré-sommables.Note de contenu :
Sommaire
Théorie des ensembles
Espaces métriques
Espaces topologiques
Espaces métriques séparables
Espaces métriques compacts
Espaces métriques complets
Espaces métriques connexes et disconnexes
Espaces vectoriels
Espaces vectoriels normes
Espaces de HilbertCôte titre : Fs/10717-10720,Fs/13314-13316 Analyse fondamentale : Espaces métriques, topologiques et normés [texte imprimé] / Szymon Dolecki, Auteur . - 2 . - Paris : Hermann, 2013 . - 1 vol. (368 p.) : ill. en noir et en coul. ; 22 cm. - (Collection Méthodes (Paris. 1966), ISSN 0588-2303) .
ISBN : 978-2-7056-8741-0
978-2-7056-8741-0
Langues : Français (fre)
Catégories : Mathématique Mots-clés : Espaces métriques
Espaces vectoriels
Espaces topologiques
Espaces linéaires normés
Topologie
Analyse fondamentaleIndex. décimale : 514.3 Topologie des espaces (topologie métrique) Résumé :
Ce livre d'analyse est destiné aux étudiants de troisième année de licence de mathématiques.
L'auteur traite des connaissances fondamentales sur les espaces métriques et normés, accompagnées toutefois d'informations concises sur l'histoire des concepts et sur les développements récents. Plusieurs aspects sont traités de façon originale, motivée par la recherche de l'auteur (le traitement des suites ou le calcul relationnel). Deux appendices permettent aux étudiants motivés d'approfondir quelques sujets importants (nombres ordinaux, compacité) au-delà du cadre de la licence.
Une esquisse de la théorie des ensembles consentira l'utilisation des concepts de relation et de cardinalité. Ensuite, on procède à partir d'une unique abstraction qui nous transporte du cadre des espaces euclidiens, familiers aux étudiants de la Licence 2, dans le domaine des espaces métriques, dont on étudie des classes principales (espaces séparables, compacts, complets et connexes), en découvrant des espaces universels, dont tout espace métrique (respectivement, métrique séparable) est un sous-espace, ou d'autres (ensemble de Cantor), dont tout espace métrique compact est une image continue.
L'abstraction de la structure vectorielle permet d'étudier les espaces métriques avec beaucoup plus d'aisance qu'avec des contraintes supplémentaires d'une autre structure.
On étudie ensuite les espaces vectoriels avant de les munir des métriques compatibles avec leur structure vectorielle (espaces normés) et d'y ajouter la complétude (espaces de Banach), en profitant des acquis de l'étude des espaces métriques complets. On se focalise enfin sur la classe des espaces munis de produit scalaire qui les rendent complets (espaces de Hilbert), où la notion d'orthogonalité nous approche de nos intuitions initiales des espaces euclidiens, en concluant à l'universalité (parmi les espaces de Hîlbert) de l'espace des fonctions carré-sommables.Note de contenu :
Sommaire
Théorie des ensembles
Espaces métriques
Espaces topologiques
Espaces métriques séparables
Espaces métriques compacts
Espaces métriques complets
Espaces métriques connexes et disconnexes
Espaces vectoriels
Espaces vectoriels normes
Espaces de HilbertCôte titre : Fs/10717-10720,Fs/13314-13316 Exemplaires (7)
Code-barres Cote Support Localisation Section Disponibilité Fs/10717 Fs/10717-10720 livre Bibliothéque des sciences Français Disponible
DisponibleFs/10718 Fs/10717-10720 livre Bibliothéque des sciences Français Disponible
DisponibleFs/10719 Fs/10717-10720 livre Bibliothéque des sciences Français Disponible
DisponibleFs/10720 Fs/10717-10720 livre Bibliothéque des sciences Français Disponible
DisponibleFs/13316 Fs/13314-13316 Livre Bibliothéque des sciences Français Disponible
DisponibleFs/13314 Fs/13314-13316 Livre Bibliothéque des sciences Français Disponible
DisponibleFs/13315 Fs/13314-13316 Livre Bibliothéque des sciences Français Disponible
Disponible
Titre : Analyse fondamentale : espaces métriques, topologiques et normés ; avec exercices Type de document : texte imprimé Auteurs : Szymon Dolecki, Auteur Editeur : Paris : Hermann Année de publication : 2010 Collection : Collection Méthodes (Paris. 1966), ISSN 0588-2303 Importance : 1 vol. (179 p.) Présentation : ill., couv. ill. en coul. Format : 22 cm ISBN/ISSN/EAN : 978-2-7056-8082-4 Langues : Français (fre) Catégories : Mathématique Mots-clés : Espaces métriques
Espaces vectoriels
Espaces topologiques
Analyse fondamentale
TopologieIndex. décimale : 514.3 - Topologie des espaces (topologie métrique) Résumé :
Ce livre d'analyse est destiné aux étudiants de troisième année de licence de mathématiques.
L'auteur traite des connaissances fondamentales sur les espaces métriques et normés, accompagnées toutefois d'informations concises sur l'histoire des concepts et sur les développements récents. Plusieurs aspects sont traités de façon originale, motivée par la recherche de l'auteur (le traitement des suites ou le calcul relationnel). Deux appendices permettent aux étudiants motivés d'approfondir quelques sujets importants (nombres ordinaux, compacité) au-delà du cadre de la licence.
Une esquisse de la théorie des ensembles consentira l'utilisation des concepts de relation et de cardinalité. Ensuite, on procède à partir d'une unique abstraction qui nous transporte du cadre des espaces euclidiens, familiers aux étudiants de la Licence 2, dans le domaine des espaces métriques, dont on étudie des classes principales (espaces séparables, compacts, complets et connexes), en découvrant des espaces universels, dont tout espace métrique (respectivement, métrique séparable) est un sous-espace, ou d'autres (ensemble de Cantor), dont tout espace métrique compact est une image continue.
L'abstraction de la structure vectorielle permet d'étudier les espaces métriques avec beaucoup plus d'aisance qu'avec des contraintes supplémentaires d'une autre structure.
On étudie ensuite les espaces vectoriels avant de les munir des métriques compatibles avec leur structure vectorielle (espaces normés) et d'y ajouter la complétude (espaces de Banach), en profitant des acquis de l'étude des espaces métriques complets. On se focalise enfin sur la classe des espaces munis de produit scalaire qui les rendent complets (espaces de Hilbert), où la notion d'orthogonalité nous approche de nos intuitions initiales des espaces euclidiens, en concluant à l'universalité (parmi les espaces de Hîlbert) de l'espace des fonctions carré-sommables.Côte titre : Fs/8818-8821 Analyse fondamentale : espaces métriques, topologiques et normés ; avec exercices [texte imprimé] / Szymon Dolecki, Auteur . - Paris : Hermann, 2010 . - 1 vol. (179 p.) : ill., couv. ill. en coul. ; 22 cm. - (Collection Méthodes (Paris. 1966), ISSN 0588-2303) .
ISBN : 978-2-7056-8082-4
Langues : Français (fre)
Catégories : Mathématique Mots-clés : Espaces métriques
Espaces vectoriels
Espaces topologiques
Analyse fondamentale
TopologieIndex. décimale : 514.3 - Topologie des espaces (topologie métrique) Résumé :
Ce livre d'analyse est destiné aux étudiants de troisième année de licence de mathématiques.
L'auteur traite des connaissances fondamentales sur les espaces métriques et normés, accompagnées toutefois d'informations concises sur l'histoire des concepts et sur les développements récents. Plusieurs aspects sont traités de façon originale, motivée par la recherche de l'auteur (le traitement des suites ou le calcul relationnel). Deux appendices permettent aux étudiants motivés d'approfondir quelques sujets importants (nombres ordinaux, compacité) au-delà du cadre de la licence.
Une esquisse de la théorie des ensembles consentira l'utilisation des concepts de relation et de cardinalité. Ensuite, on procède à partir d'une unique abstraction qui nous transporte du cadre des espaces euclidiens, familiers aux étudiants de la Licence 2, dans le domaine des espaces métriques, dont on étudie des classes principales (espaces séparables, compacts, complets et connexes), en découvrant des espaces universels, dont tout espace métrique (respectivement, métrique séparable) est un sous-espace, ou d'autres (ensemble de Cantor), dont tout espace métrique compact est une image continue.
L'abstraction de la structure vectorielle permet d'étudier les espaces métriques avec beaucoup plus d'aisance qu'avec des contraintes supplémentaires d'une autre structure.
On étudie ensuite les espaces vectoriels avant de les munir des métriques compatibles avec leur structure vectorielle (espaces normés) et d'y ajouter la complétude (espaces de Banach), en profitant des acquis de l'étude des espaces métriques complets. On se focalise enfin sur la classe des espaces munis de produit scalaire qui les rendent complets (espaces de Hilbert), où la notion d'orthogonalité nous approche de nos intuitions initiales des espaces euclidiens, en concluant à l'universalité (parmi les espaces de Hîlbert) de l'espace des fonctions carré-sommables.Côte titre : Fs/8818-8821 Exemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité Fs/8818 Fs/8818-8821 livre Bibliothéque des sciences Français Disponible
DisponibleFs/8820 Fs/8818-8821 livre Bibliothéque des sciences Français Disponible
DisponibleFs/8821 Fs/8818-8821 livre Bibliothéque des sciences Français Disponible
Disponible