University Sétif 1 FERHAT ABBAS Faculty of Sciences
Détail de l'auteur
Auteur MILLS,D.L. |
Documents disponibles écrits par cet auteur



Titre : Nonlinear optics :Basic concepts Type de document : texte imprimé Auteurs : MILLS,D.L. Editeur : Berlin : Springer Année de publication : 1998 Importance : 1 vol (263 p.) Format : 24 cm ISBN/ISSN/EAN : 978-3-540-64182-7 Catégories : Physique Mots-clés : Optique non linéaire
Mécanique quantiqueIndex. décimale : 535.2 Optique physique (optique cohérente et non linéaire) Résumé :
Destiné aux lecteurs ayant une formation en théorie électromagnétique classique, ce livre développe les principes de base qui sous-tendent les phénomènes optiques non linéaires dans la matière. Il commence par une discussion sur la propagation des ondes linéaires dans les milieux dispersifs, passe ensuite à des non-linéarités faibles qui peuvent être discutées de manière perturbatrice, puis examine de puissants effets non linéaires (solitons, chaos). L'accent est mis sur la description macroscopique des phénomènes non linéaires, dans un cadre semi-classique. Deux nouveaux chapitres couvrent l’optique de surface et les phénomènes magnéto-optiques. Le livre s'adresse à l'étudiant ou au chercheur qui n'est pas spécialiste en optique mais qui a besoin d'une introduction aux concepts principaux.Note de contenu :
Sommaire
1. Introductory Remarks.- Problems.-
2. Linear Dielectric Response of Matter.-
2.1 Frequency Dependence of the Dielectric Tensor.-
2.2 Wave Vector Dependence of the Dielectric Tensor.-
2.3 Electromagnetic Waves in Anisotropic Dielectrics.- Problems.-
3. Nonlinear Dielectric Response of Matter.-
3.1 Frequency Variation of the Nonlinear Susceptibilities.-
3.2 Wave Vector Dependence of the Nonlinear Susceptibilities.-
3.3 Remarks on the Order of Magnitude of the Nonlinear Susceptibilities.- Problems.-
4. Basic Principles of Nonlinear Wave Interactions: Second Harmonic Generation and Four Wave Mixing.-
4.1 Perturbation Theoretic Analysis of Second-Harmonic Generation.-
4.2 Methods of Achieving the Phase Matching Condition.-
4.3 Evolution of the Second-Harmonic Wave under Phase Matched Conditions.-
4.4 Other Examples of Nonlinear Wave Interactions.-
4.4.1 Four Wave Mixing Spectroscopy.-
4.4.2 Optical Phase Conjugation.- Problems.-
5. Inelastic Scattering of Light from Matter: Stimulated Raman and Brillouin Scattering.-
5.1 Quantum Theory of Raman Scattering.-
5.2 Stimulated Raman Effect.-
5.3 Contribution to Four Wave Mixing from the Raman Nonlinearity.-
5.4 Brillouin Scattering of Light.- Problems.-
6. Interaction of Atoms with Nearly Resonant Fields: Self-Induced Transparency.-
6.1 Description of the Wave Function under Near Resonant Conditions.-
6.2 Bloch Equations: Power Broadening and Saturation Effects in Absorption Spectra.-
6.3 Self-Induced Transparency.-
6.4 Area Theorem.-
6.5 Sine-Gordon Equation.- Problems.-
7. Self-Interaction Effects in One-Dimensional Wave Propagation: Solitons in Optical Fibers and in Periodic Structures.-
7.1 Normal Modes of Optical Fibers.-
7.2 Nonlinear Schroedinger Equation.-
7.3 Linear Theory of Pulse Propagation in a Dispersive Medium: Application to Optical Fibers.-
7.4 Solitons and the Nonlinear Schroedinger Equation.-
7.5 Gap Solitons in Nonlinear Periodic Structures.- Problems.-
8. Nonlinear Optical Interactions at Surfaces and Interfaces.-
8.1 Second-Harmonic Generation from Surfaces; General Discussion.-
8.2 Nonlinear Optical Interactions at Surfaces and Interfaces; Examples.-
8.2.1 Second-Harmonic Generation from Clean Crystal Surfaces.-
8.2.2 Second-Harmonic Generation from Adsorbate Layers on Surfaces.-
8.2.3 The Generation of Sum Frequencies from Adsorbates on Surfaces.-
8.3 Resonant Enhancement of Electromagnetic Fields Near Surfaces and Interfaces and Their Role in Surface Nonlinear Optics.-
8.3.1 Resonant Enhancement of Electric Fields Near Small Conducting Spheres.-
8.3.2 Resonant Response of a Slightly Roughened Surface to Electromagnetic Fields; The Role of Surface Polaritons.-
8.3.3 Resonant Enhancement of Electromagnetic Fields Near Rough Surfaces of Conducting Media.-
8.4 Experimental Studies of Surface Enhanced Nonlinear Optical Interactions.- Problems.-
9. Optical Interactions in Magnetic Materials.-
9.1 Introductory Remarks.-
9.2 Electromagnetic Wave Propagation in Ferromagnetic Materials; Faraday Rotation and the Cotton-Mouton Effect.-
9.2.1 Propagation Parallel to the Magnetization; Faraday Rotation and the Kerr Effect.-
9.2.2 Propagation Perpendicular to Magnetization; the Cotton-Mouton Effect.-
9.2.3 Final Remarks.-
9.3 Second-Harmonic Generation from Magnetic Materials; Surface Effects.-
9.4 Dynamic Response of the Magnetization and the Origin of Nonlinear Magnetooptic Interactions.-
9.4.1 General Remarks.-
9.4.2 Collective Excitations (Spin Waves) in Magnetic Materials; Ferromagnets as an Example.-
9.4.3 Surface Spin Waves on Ferromagnetic Surface; the Damon-Eshbach Mode and Non Reciprocal Propagation on Magnetic Surfaces.-
9.5 Nonlinear Interaction of Light with Spin Waves in Ferromagnets.-
9.5.1 Brillouin Scattering of Light by Thermally Excited Spin Waves.-
9.5.2 Nonlinear Mixing of Light with Macroscopic Spin Waves; the Magneto-optic Bragg Cell as an Example.- Problems.-
10. Chaos.
10.1 Duffing Oscillator: Transition to Chaos.-
10.2 Routes to Chaos.-
10.3 Experimental Observations of Chaos in Optical Systems.- Problems.- Appendix A: Structure of the Wave Vector and Frequency Dependent Dielectric Tensor.- Appendix B: Aspects of the Sine-Gordon Equation.- Appendix C: Structure of the Electromagnetic Green's Functions.- References.Côte titre : Fs/0265 Nonlinear optics :Basic concepts [texte imprimé] / MILLS,D.L. . - Berlin : Springer, 1998 . - 1 vol (263 p.) ; 24 cm.
ISBN : 978-3-540-64182-7
Catégories : Physique Mots-clés : Optique non linéaire
Mécanique quantiqueIndex. décimale : 535.2 Optique physique (optique cohérente et non linéaire) Résumé :
Destiné aux lecteurs ayant une formation en théorie électromagnétique classique, ce livre développe les principes de base qui sous-tendent les phénomènes optiques non linéaires dans la matière. Il commence par une discussion sur la propagation des ondes linéaires dans les milieux dispersifs, passe ensuite à des non-linéarités faibles qui peuvent être discutées de manière perturbatrice, puis examine de puissants effets non linéaires (solitons, chaos). L'accent est mis sur la description macroscopique des phénomènes non linéaires, dans un cadre semi-classique. Deux nouveaux chapitres couvrent l’optique de surface et les phénomènes magnéto-optiques. Le livre s'adresse à l'étudiant ou au chercheur qui n'est pas spécialiste en optique mais qui a besoin d'une introduction aux concepts principaux.Note de contenu :
Sommaire
1. Introductory Remarks.- Problems.-
2. Linear Dielectric Response of Matter.-
2.1 Frequency Dependence of the Dielectric Tensor.-
2.2 Wave Vector Dependence of the Dielectric Tensor.-
2.3 Electromagnetic Waves in Anisotropic Dielectrics.- Problems.-
3. Nonlinear Dielectric Response of Matter.-
3.1 Frequency Variation of the Nonlinear Susceptibilities.-
3.2 Wave Vector Dependence of the Nonlinear Susceptibilities.-
3.3 Remarks on the Order of Magnitude of the Nonlinear Susceptibilities.- Problems.-
4. Basic Principles of Nonlinear Wave Interactions: Second Harmonic Generation and Four Wave Mixing.-
4.1 Perturbation Theoretic Analysis of Second-Harmonic Generation.-
4.2 Methods of Achieving the Phase Matching Condition.-
4.3 Evolution of the Second-Harmonic Wave under Phase Matched Conditions.-
4.4 Other Examples of Nonlinear Wave Interactions.-
4.4.1 Four Wave Mixing Spectroscopy.-
4.4.2 Optical Phase Conjugation.- Problems.-
5. Inelastic Scattering of Light from Matter: Stimulated Raman and Brillouin Scattering.-
5.1 Quantum Theory of Raman Scattering.-
5.2 Stimulated Raman Effect.-
5.3 Contribution to Four Wave Mixing from the Raman Nonlinearity.-
5.4 Brillouin Scattering of Light.- Problems.-
6. Interaction of Atoms with Nearly Resonant Fields: Self-Induced Transparency.-
6.1 Description of the Wave Function under Near Resonant Conditions.-
6.2 Bloch Equations: Power Broadening and Saturation Effects in Absorption Spectra.-
6.3 Self-Induced Transparency.-
6.4 Area Theorem.-
6.5 Sine-Gordon Equation.- Problems.-
7. Self-Interaction Effects in One-Dimensional Wave Propagation: Solitons in Optical Fibers and in Periodic Structures.-
7.1 Normal Modes of Optical Fibers.-
7.2 Nonlinear Schroedinger Equation.-
7.3 Linear Theory of Pulse Propagation in a Dispersive Medium: Application to Optical Fibers.-
7.4 Solitons and the Nonlinear Schroedinger Equation.-
7.5 Gap Solitons in Nonlinear Periodic Structures.- Problems.-
8. Nonlinear Optical Interactions at Surfaces and Interfaces.-
8.1 Second-Harmonic Generation from Surfaces; General Discussion.-
8.2 Nonlinear Optical Interactions at Surfaces and Interfaces; Examples.-
8.2.1 Second-Harmonic Generation from Clean Crystal Surfaces.-
8.2.2 Second-Harmonic Generation from Adsorbate Layers on Surfaces.-
8.2.3 The Generation of Sum Frequencies from Adsorbates on Surfaces.-
8.3 Resonant Enhancement of Electromagnetic Fields Near Surfaces and Interfaces and Their Role in Surface Nonlinear Optics.-
8.3.1 Resonant Enhancement of Electric Fields Near Small Conducting Spheres.-
8.3.2 Resonant Response of a Slightly Roughened Surface to Electromagnetic Fields; The Role of Surface Polaritons.-
8.3.3 Resonant Enhancement of Electromagnetic Fields Near Rough Surfaces of Conducting Media.-
8.4 Experimental Studies of Surface Enhanced Nonlinear Optical Interactions.- Problems.-
9. Optical Interactions in Magnetic Materials.-
9.1 Introductory Remarks.-
9.2 Electromagnetic Wave Propagation in Ferromagnetic Materials; Faraday Rotation and the Cotton-Mouton Effect.-
9.2.1 Propagation Parallel to the Magnetization; Faraday Rotation and the Kerr Effect.-
9.2.2 Propagation Perpendicular to Magnetization; the Cotton-Mouton Effect.-
9.2.3 Final Remarks.-
9.3 Second-Harmonic Generation from Magnetic Materials; Surface Effects.-
9.4 Dynamic Response of the Magnetization and the Origin of Nonlinear Magnetooptic Interactions.-
9.4.1 General Remarks.-
9.4.2 Collective Excitations (Spin Waves) in Magnetic Materials; Ferromagnets as an Example.-
9.4.3 Surface Spin Waves on Ferromagnetic Surface; the Damon-Eshbach Mode and Non Reciprocal Propagation on Magnetic Surfaces.-
9.5 Nonlinear Interaction of Light with Spin Waves in Ferromagnets.-
9.5.1 Brillouin Scattering of Light by Thermally Excited Spin Waves.-
9.5.2 Nonlinear Mixing of Light with Macroscopic Spin Waves; the Magneto-optic Bragg Cell as an Example.- Problems.-
10. Chaos.
10.1 Duffing Oscillator: Transition to Chaos.-
10.2 Routes to Chaos.-
10.3 Experimental Observations of Chaos in Optical Systems.- Problems.- Appendix A: Structure of the Wave Vector and Frequency Dependent Dielectric Tensor.- Appendix B: Aspects of the Sine-Gordon Equation.- Appendix C: Structure of the Electromagnetic Green's Functions.- References.Côte titre : Fs/0265 Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité Fs/0265 Fs/0265 Livre Bibliothéque des sciences Français Disponible
Disponible