Titre : |
Ten physical applications of spectral zeta functions |
Type de document : |
texte imprimé |
Auteurs : |
E. Elizalde, Auteur |
Editeur : |
Berlin : Springer |
Année de publication : |
1995 |
Collection : |
lecture notes in physics |
Sous-collection : |
Monographs num. m35 |
Importance : |
1 vol. (224 p.) |
Présentation : |
ill. |
Format : |
24 cm |
ISBN/ISSN/EAN : |
978-3-540-60230-9 |
Note générale : |
978-3-540-60230-9 |
Langues : |
Anglais (eng) |
Catégories : |
Physique
|
Mots-clés : |
Functions
Zeta
Mathematical physics
Fonctions zêta
Physique mathématique |
Index. décimale : |
530.1 Physique mathématique |
Résumé : |
Zeta-function regularization is a powerful method in perturbation theory, and this book is a comprehensive guide for the student of this subject. Everything is explained in detail, in particular the mathematical difficulties and tricky points, and several applications are given to show how the procedure works in practice, for example in the Casimir effect, gravity and string theory, high-temperature phase transition, topological symmetry breaking, and non-commutative spacetime. The formulae, some of which are new, can be directly applied in creating physically meaningful, accurate numerical calculations. The book acts both as a basic introduction and a collection of exercises for those who want to apply this regularization procedure in practice
Thoroughly revised, updated and expanded, this new edition includes novel, explicit formulas on the general quadratic, the Chowla-Selberg series case, an interplay with the Hadamard calculus, and also features a fresh chapter on recent cosmological applications, including the calculation of the vacuum energy fluctuations at large scale in braneworld and other models. |
Note de contenu : |
Sommaire
Introduction and Outlook
Mathematical Formulas Involving the Different Zeta Functions
ATreatment of the Nonpolynomial Contributions Application to Calculate Partition Functions of Strings and Membranees
Analytical and Numerical Study of Inhomogeneous Epstein and EpsteinHurwitz Zeta Functions
Physical Application The Casimir Effecte
Five Physical Applications of the Inhomogeneous Generalized EpsteinHurwitz Zeta Functions
Miscellaneous Applications Combining Zeta with Other Regularization Procedures
Applications to Gravity Strings and pBranes
Eleventh Application Topological Symmetry Breaking in SelfInteracting Theories
Twelfth Application Cosmology and the Quantum Vacuum
References
Index
Droits d'auteur
|
Côte titre : |
Fs/14255-14256 |
Ten physical applications of spectral zeta functions [texte imprimé] / E. Elizalde, Auteur . - Berlin : Springer, 1995 . - 1 vol. (224 p.) : ill. ; 24 cm. - ( lecture notes in physics. Monographs; m35) . ISBN : 978-3-540-60230-9 978-3-540-60230-9 Langues : Anglais ( eng)
Catégories : |
Physique
|
Mots-clés : |
Functions
Zeta
Mathematical physics
Fonctions zêta
Physique mathématique |
Index. décimale : |
530.1 Physique mathématique |
Résumé : |
Zeta-function regularization is a powerful method in perturbation theory, and this book is a comprehensive guide for the student of this subject. Everything is explained in detail, in particular the mathematical difficulties and tricky points, and several applications are given to show how the procedure works in practice, for example in the Casimir effect, gravity and string theory, high-temperature phase transition, topological symmetry breaking, and non-commutative spacetime. The formulae, some of which are new, can be directly applied in creating physically meaningful, accurate numerical calculations. The book acts both as a basic introduction and a collection of exercises for those who want to apply this regularization procedure in practice
Thoroughly revised, updated and expanded, this new edition includes novel, explicit formulas on the general quadratic, the Chowla-Selberg series case, an interplay with the Hadamard calculus, and also features a fresh chapter on recent cosmological applications, including the calculation of the vacuum energy fluctuations at large scale in braneworld and other models. |
Note de contenu : |
Sommaire
Introduction and Outlook
Mathematical Formulas Involving the Different Zeta Functions
ATreatment of the Nonpolynomial Contributions Application to Calculate Partition Functions of Strings and Membranees
Analytical and Numerical Study of Inhomogeneous Epstein and EpsteinHurwitz Zeta Functions
Physical Application The Casimir Effecte
Five Physical Applications of the Inhomogeneous Generalized EpsteinHurwitz Zeta Functions
Miscellaneous Applications Combining Zeta with Other Regularization Procedures
Applications to Gravity Strings and pBranes
Eleventh Application Topological Symmetry Breaking in SelfInteracting Theories
Twelfth Application Cosmology and the Quantum Vacuum
References
Index
Droits d'auteur
|
Côte titre : |
Fs/14255-14256 |
|  |