University Sétif 1 FERHAT ABBAS Faculty of Sciences
Détail de l'éditeur
Cassini
localisé à :
Paris
Collections rattachées :
|
Documents disponibles chez cet éditeur



Titre : Algèbre et théories galoi siennes Type de document : texte imprimé Auteurs : DOUADY,Aégine ; DOUADY,Adrien Editeur : Paris : Cassini Année de publication : 2005 Collection : Nouvelle bibliothèque mathématique Importance : 1 vol. (500 p.) Présentation : ill. Format : 24 cm ISBN/ISSN/EAN : 978-2-84225-005-8 Note générale : Bibliographie Catégories : Mathématique Mots-clés : Mathématique
Algèbre : Manuels d'enseignement supérieurIndex. décimale : 512 Algèbre Résumé :
l s'agit d'une nouvelle édition, revue et augmentée, d'un ouvrage depuis longtemps épuisé et toujours très demandé. Ce livre a compté dans la formation de nombreux chercheurs, aujourd'hui en exercice, qu'il a initiés au langage et à la philosophie de Grothendieck. La géométrie algébrique moderne, qui est l'une des réalisations majeures des mathématiques du XXe siècle, et qui est en grande partie l'oeuvre d'Alexandre Grothendieck, est une théorie d'accès difficile : elle demande un changement de point de vue et, par rapport à la pratique habituelle des mathématiciens, un nouveau saut dans l'abstraction. L'une des preuves de la puissance du nouveau langage introduit par Grothendieck est le fait qu'il permet de traiter en employant les mêmes termes des questions de géométrie et des questions de théorie des nombres, et surtout d'éclairer les unes par les autres. L'un des principaux mérites du livre des Douady - tacite, car cela n'est apparu en pleine lumière qu'avec le recul des années - est de procurer une voie d'accès à ces sphères élevées en étudiant une situation où les deux aspects, algèbre et théorie des nombres d'une part, géométrie de l'autre, sont pour le débutant sinon intuitifs, du moins relativement faciles à saisir.
La première partie expose ce que chaque étudiant de maîtrise (ou agrégatif) doit savoir sur les anneaux et les modules, et contient un exposé de la théorie des catégories, ce qu'on ne trouve que rarement dans les livres d'algèbre de ce niveau. C'est dans la deuxième partie que réside toute l'originalité du livre, celle qui traite en parallèle la théorie de Galois et celle des revêtements, et concrétise l'analogie entre elles en étudiant les surfaces de Riemann. On ne trouve pas d'autre essai de cette nature dans la littérature, française ou étrangère. Le livre a été entièrement revu et corrigé. Il comportait un grand nombre d'exercices. Plusieurs dizaines de nouveaux exercices, tous originaux, ont été ajoutés. Un nouveau chapitre sera consacré à la théorie des "des dessins d'enfants" de Grothendieck.
Public. Étudiants en troisième cycle de mathématiques, chercheurs, candidats à l'agrégation.Note de contenu :
Théorème de Zorn
Catégorie et foncteurs
Algèbre linéaire
Revêtements
Théorie de Galois
Surface de Riemann
Dessins d'enfantsAlgèbre et théories galoi siennes [texte imprimé] / DOUADY,Aégine ; DOUADY,Adrien . - Paris : Cassini, 2005 . - 1 vol. (500 p.) : ill. ; 24 cm. - (Nouvelle bibliothèque mathématique) .
ISBN : 978-2-84225-005-8
Bibliographie
Catégories : Mathématique Mots-clés : Mathématique
Algèbre : Manuels d'enseignement supérieurIndex. décimale : 512 Algèbre Résumé :
l s'agit d'une nouvelle édition, revue et augmentée, d'un ouvrage depuis longtemps épuisé et toujours très demandé. Ce livre a compté dans la formation de nombreux chercheurs, aujourd'hui en exercice, qu'il a initiés au langage et à la philosophie de Grothendieck. La géométrie algébrique moderne, qui est l'une des réalisations majeures des mathématiques du XXe siècle, et qui est en grande partie l'oeuvre d'Alexandre Grothendieck, est une théorie d'accès difficile : elle demande un changement de point de vue et, par rapport à la pratique habituelle des mathématiciens, un nouveau saut dans l'abstraction. L'une des preuves de la puissance du nouveau langage introduit par Grothendieck est le fait qu'il permet de traiter en employant les mêmes termes des questions de géométrie et des questions de théorie des nombres, et surtout d'éclairer les unes par les autres. L'un des principaux mérites du livre des Douady - tacite, car cela n'est apparu en pleine lumière qu'avec le recul des années - est de procurer une voie d'accès à ces sphères élevées en étudiant une situation où les deux aspects, algèbre et théorie des nombres d'une part, géométrie de l'autre, sont pour le débutant sinon intuitifs, du moins relativement faciles à saisir.
La première partie expose ce que chaque étudiant de maîtrise (ou agrégatif) doit savoir sur les anneaux et les modules, et contient un exposé de la théorie des catégories, ce qu'on ne trouve que rarement dans les livres d'algèbre de ce niveau. C'est dans la deuxième partie que réside toute l'originalité du livre, celle qui traite en parallèle la théorie de Galois et celle des revêtements, et concrétise l'analogie entre elles en étudiant les surfaces de Riemann. On ne trouve pas d'autre essai de cette nature dans la littérature, française ou étrangère. Le livre a été entièrement revu et corrigé. Il comportait un grand nombre d'exercices. Plusieurs dizaines de nouveaux exercices, tous originaux, ont été ajoutés. Un nouveau chapitre sera consacré à la théorie des "des dessins d'enfants" de Grothendieck.
Public. Étudiants en troisième cycle de mathématiques, chercheurs, candidats à l'agrégation.Note de contenu :
Théorème de Zorn
Catégorie et foncteurs
Algèbre linéaire
Revêtements
Théorie de Galois
Surface de Riemann
Dessins d'enfantsExemplaires (5)
Code-barres Cote Support Localisation Section Disponibilité Fs/3494 Fs/3494-3498 Livre Bibliothéque des sciences Français Disponible
DisponibleFs/3495 Fs/3494-3498 Livre Bibliothéque des sciences Français Disponible
DisponibleFs/3496 Fs/3494-3498 Livre Bibliothéque des sciences Français Disponible
DisponibleFs/3497 Fs/3494-3498 Livre Bibliothéque des sciences Français Disponible
DisponibleFs/3498 Fs/3494-3498 Livre Bibliothéque des sciences Français Disponible
Disponible
Titre : Analyse complexe Type de document : texte imprimé Auteurs : Eric Amar, Auteur ; Étienne Matheron, Auteur Editeur : Paris : Cassini Année de publication : 2004 Collection : Enseignement des mathématiques (Paris. 1998), ISSN 1294-0151 num. 18 Importance : 1 vol. (470 p.) Présentation : ill. Format : 23 cm ISBN/ISSN/EAN : 978-2-84225-052-2 Note générale : 978-2-84225-052-2 Langues : Français (fre) Catégories : Mathématique Mots-clés : Fonctions d'une variable complexe
Fonctions de plusieurs variables complexesIndex. décimale : 515.9 - Fonctions de variables complexes Résumé :
Ce livre traite clé la théorie des fonctions d'une variable complexe. On y trouvera ce qui est habituellement enseigné dans un premier cours sur les fonctions holomorphes, ainsi qu'un certain nombre de développements plus avancés. Le livre pourra donc intéresser aussi bien les étudiants en troisième ou quatrième année d'université que les étudiants préparant l'agrégation. Si les thèmes abordés sont bien sûr très classiques, le point de vue est moderne, inspiré par certains aspects de la théorie des fonctions holomorphes de plusieurs variables. En témoignent l'utilisation constante des formes différentielles, le recours occasionnel à la théorie des distributions, ou la place accordée aux fonctions sous-harmoniques. Parallèlement, les auteurs se sont attachés à mettre en valeur la position privilégiée de l'analyse complexe à la croisée des chemins entre la géométrie différentielle, la topologie, l'analyse fonctionnelle et l'analyse harmonique. Une place très importante a été accordée aux exercices, qui visent à la fois à faciliter l'assimilation des contenus de base, et à proposer des ouvertures sur des sujets plus avancés.Note de contenu :
Sommaire
Intégrale curviligne
Formes différentielles dans le plan
Fonctions holomorphes
Homotopie
Topologie du plan
Théorème de Cauchy homologique
Résidus
Théorème de Runge et applications
Représentation conforme
Fonctions harmoniques
Fonctions sous-harmoniquesCôte titre : Fs/13306-13307,Fs/11891-11895,Fs/12578 Analyse complexe [texte imprimé] / Eric Amar, Auteur ; Étienne Matheron, Auteur . - Paris : Cassini, 2004 . - 1 vol. (470 p.) : ill. ; 23 cm. - (Enseignement des mathématiques (Paris. 1998), ISSN 1294-0151; 18) .
ISBN : 978-2-84225-052-2
978-2-84225-052-2
Langues : Français (fre)
Catégories : Mathématique Mots-clés : Fonctions d'une variable complexe
Fonctions de plusieurs variables complexesIndex. décimale : 515.9 - Fonctions de variables complexes Résumé :
Ce livre traite clé la théorie des fonctions d'une variable complexe. On y trouvera ce qui est habituellement enseigné dans un premier cours sur les fonctions holomorphes, ainsi qu'un certain nombre de développements plus avancés. Le livre pourra donc intéresser aussi bien les étudiants en troisième ou quatrième année d'université que les étudiants préparant l'agrégation. Si les thèmes abordés sont bien sûr très classiques, le point de vue est moderne, inspiré par certains aspects de la théorie des fonctions holomorphes de plusieurs variables. En témoignent l'utilisation constante des formes différentielles, le recours occasionnel à la théorie des distributions, ou la place accordée aux fonctions sous-harmoniques. Parallèlement, les auteurs se sont attachés à mettre en valeur la position privilégiée de l'analyse complexe à la croisée des chemins entre la géométrie différentielle, la topologie, l'analyse fonctionnelle et l'analyse harmonique. Une place très importante a été accordée aux exercices, qui visent à la fois à faciliter l'assimilation des contenus de base, et à proposer des ouvertures sur des sujets plus avancés.Note de contenu :
Sommaire
Intégrale curviligne
Formes différentielles dans le plan
Fonctions holomorphes
Homotopie
Topologie du plan
Théorème de Cauchy homologique
Résidus
Théorème de Runge et applications
Représentation conforme
Fonctions harmoniques
Fonctions sous-harmoniquesCôte titre : Fs/13306-13307,Fs/11891-11895,Fs/12578 Exemplaires (8)
Code-barres Cote Support Localisation Section Disponibilité Fs/11891 Fs/11891-11895 livre Bibliothéque des sciences Français Disponible
Sorti jusqu'au 23/02/2025Fs/11892 Fs/11891-11895 livre Bibliothéque des sciences Français Disponible
DisponibleFs/11893 Fs/11891-11895 livre Bibliothéque des sciences Français Disponible
DisponibleFs/11894 Fs/11891-11895 livre Bibliothéque des sciences Français Disponible
DisponibleFs/11895 Fs/11891-11895 livre Bibliothéque des sciences Français Disponible
DisponibleFs/12578 Fs/12578 livre Bibliothéque des sciences Français Disponible
DisponibleFs/13307 Fs/13306-13307 Livre Bibliothéque des sciences Français Disponible
DisponibleFs/13306 Fs/13306-13307 Livre Bibliothéque des sciences Français Disponible
Disponible
Titre : Analyse fonctionnelle élémentaire Type de document : texte imprimé Auteurs : Michel Willem (1953-....), Auteur Editeur : Paris : Cassini Année de publication : 2003 Collection : Enseignement des mathématiques (Paris. 1998), ISSN 1294-0151 num. 17 Importance : 1 vol. (136 p.) Format : 23 cm ISBN/ISSN/EAN : 978-2-84225-066-9 Note générale : Bibliogr. p. 129-130. Index Langues : Français (fre) Catégories : Mathématique Mots-clés : Analyse fonctionnelle
Dualité, Principe de (mathématiques)
Sobolev, Espaces de
Banach, Espaces de
Lebesgue, Intégrale deIndex. décimale : 515.7 Analyse fonctionnelle Résumé :
Ce bref ouvrage très dense, rédigé par un spécialiste des équations aux dérivées partielles, fournit les bases d'analyse fonctionnelle abstraite indispensables à tout étudiant en mathématiques, en mathématiques appliquées ou à tout candidat à l'agrégation : intégrale de Lebesgue, espaces de Banach, espaces de Hibert, espaces de Lebesgue et dualité. Trois chapitres sont ensuite consacrés à des applications : espaces de Sobolev, réarrangements, problèmes elliptiques linéaires et non linéaires. L'exposé, original, fait souvent appel à des méthodes inspirées de recherches récentes, qui figurent pour la première fois dans un ouvrage pédagogique. On notera l'usage des inégalités de réarrangement dans le traitement des problèmes elliptiques, la présentation, dans les dernières pages du livre, de résultats nouveaux sur les ruptures de symétrie et, dans le premier chapitre, une construction simple et directe de l'intégrale de lebesgue. L'ouvrage comporte 84 énoncés d'exerciceNote de contenu :
Intégration
Espaces de Banach
Espaces de Lebesque
Dualité
Espace de Sobolev
Réarrangements
Problèmes elliptiques
CommentairesAnalyse fonctionnelle élémentaire [texte imprimé] / Michel Willem (1953-....), Auteur . - Paris : Cassini, 2003 . - 1 vol. (136 p.) ; 23 cm. - (Enseignement des mathématiques (Paris. 1998), ISSN 1294-0151; 17) .
ISBN : 978-2-84225-066-9
Bibliogr. p. 129-130. Index
Langues : Français (fre)
Catégories : Mathématique Mots-clés : Analyse fonctionnelle
Dualité, Principe de (mathématiques)
Sobolev, Espaces de
Banach, Espaces de
Lebesgue, Intégrale deIndex. décimale : 515.7 Analyse fonctionnelle Résumé :
Ce bref ouvrage très dense, rédigé par un spécialiste des équations aux dérivées partielles, fournit les bases d'analyse fonctionnelle abstraite indispensables à tout étudiant en mathématiques, en mathématiques appliquées ou à tout candidat à l'agrégation : intégrale de Lebesgue, espaces de Banach, espaces de Hibert, espaces de Lebesgue et dualité. Trois chapitres sont ensuite consacrés à des applications : espaces de Sobolev, réarrangements, problèmes elliptiques linéaires et non linéaires. L'exposé, original, fait souvent appel à des méthodes inspirées de recherches récentes, qui figurent pour la première fois dans un ouvrage pédagogique. On notera l'usage des inégalités de réarrangement dans le traitement des problèmes elliptiques, la présentation, dans les dernières pages du livre, de résultats nouveaux sur les ruptures de symétrie et, dans le premier chapitre, une construction simple et directe de l'intégrale de lebesgue. L'ouvrage comporte 84 énoncés d'exerciceNote de contenu :
Intégration
Espaces de Banach
Espaces de Lebesque
Dualité
Espace de Sobolev
Réarrangements
Problèmes elliptiques
CommentairesExemplaires (10)
Code-barres Cote Support Localisation Section Disponibilité Fs/5505 Fs/5505-5508 livre Bibliothéque des sciences Français Disponible
DisponibleFs/5506 Fs/5505-5508 livre Bibliothéque des sciences Français Disponible
DisponibleFs/5507 Fs/5505-5508 livre Bibliothéque des sciences Français Disponible
DisponibleFs/5508 Fs/5505-5508 livre Bibliothéque des sciences Français Disponible
DisponibleFs/6663 Fs/6663-6668 livre Bibliothéque des sciences Français Disponible
DisponibleFs/6664 Fs/6663-6668 livre Bibliothéque des sciences Français Disponible
DisponibleFs/6665 Fs/6663-6668 livre Bibliothéque des sciences Français Disponible
DisponibleFs/6666 Fs/6663-6668 livre Bibliothéque des sciences Français Disponible
DisponibleFs/6667 Fs/6663-6668 livre Bibliothéque des sciences Français Disponible
DisponibleFs/6668 Fs/6663-6668 livre Bibliothéque des sciences Français Disponible
Disponible
Titre : Analyse numérique des équations aux dérivées partielles Type de document : texte imprimé Auteurs : Laurent Di Menza, Auteur Editeur : Paris : Cassini Année de publication : 2009 Collection : Enseignement des mathématiques (Paris. 1998), ISSN 1294-0151 num. 24 Importance : 1 vol. (221 p.) Présentation : ill. Format : 23 cm ISBN/ISSN/EAN : 978-2-84225-073-7 Note générale : 978-2-84225-073-7 Langues : Français (fre) Catégories : Mathématique Mots-clés : Équations aux dérivées partielles : Solutions numériques
Analyse numérique : Manuels d'enseignement supérieur
Équations aux dérivées partielles : Manuels d'enseignement supérieurIndex. décimale : 515.35 - Équations différentielles Résumé :
L'objectif de cet ouvrage est de donner quelques outils pour la résolution numérique d'équations aux dérivées partielles (EDP). Après une partie introductive consacrée à des rappels d'analyse fonctionnelle, on montre sur quelques exemples comment il est possible d'obtenir à partir de principes généraux des modèles simples permettant d'étudier des phénomènes physiques donnés. Ces modèles consistent généralement en des EDP, linéaires ou non linéaires, et la détermination de la quantité étudiée, comme la température d'un milieu ou la densité d'un gaz, passe par la résolution de celles-ci. Dans la troisième partie, les solutions de ces EDP sont calculées explicitement à l'aide de techniques classiques, parmi lesquelles la méthode des caractéristiques et la transformation de Fourier. Pour des modèles plus réalistes (donc plus complexes), ces méthodes sont inopérantes, et on se tourne vers l'obtention de solutions numériques approchées. Plusieurs classes de méthodes d'approximation (différences finies, éléments finis et volumes finis) sont abordées dans la quatrième partie, et testées sur les modèles simples précédemment étudiés. Enfin, le chapitre final est consacré à quelques algorithmes de résolution de systèmes linéaires. Ce livre s'adresse aux étudiants de 3e année de licence et de master en mathématiques appliquées, aux candidats à l'agrégation ainsi qu'aux physiciens et aux ingénieurs désireux de se familiariser avec l'approximation des solutions d'équations aux dérivées partielles.Note de contenu :
Sommaire
Préliminaires
Modèles physiques et EDP
Solutions d'EDP classiques
Schémas aux différences finies pour les EDP
Méthodes d'éléments finis pour les EDP
Volumes finis pour des lois de conservation
Méthodes itératives pour les systèmes linéaires
Repères historiquesCôte titre : Fs/13325-13327,Fs/7094 Analyse numérique des équations aux dérivées partielles [texte imprimé] / Laurent Di Menza, Auteur . - Paris : Cassini, 2009 . - 1 vol. (221 p.) : ill. ; 23 cm. - (Enseignement des mathématiques (Paris. 1998), ISSN 1294-0151; 24) .
ISBN : 978-2-84225-073-7
978-2-84225-073-7
Langues : Français (fre)
Catégories : Mathématique Mots-clés : Équations aux dérivées partielles : Solutions numériques
Analyse numérique : Manuels d'enseignement supérieur
Équations aux dérivées partielles : Manuels d'enseignement supérieurIndex. décimale : 515.35 - Équations différentielles Résumé :
L'objectif de cet ouvrage est de donner quelques outils pour la résolution numérique d'équations aux dérivées partielles (EDP). Après une partie introductive consacrée à des rappels d'analyse fonctionnelle, on montre sur quelques exemples comment il est possible d'obtenir à partir de principes généraux des modèles simples permettant d'étudier des phénomènes physiques donnés. Ces modèles consistent généralement en des EDP, linéaires ou non linéaires, et la détermination de la quantité étudiée, comme la température d'un milieu ou la densité d'un gaz, passe par la résolution de celles-ci. Dans la troisième partie, les solutions de ces EDP sont calculées explicitement à l'aide de techniques classiques, parmi lesquelles la méthode des caractéristiques et la transformation de Fourier. Pour des modèles plus réalistes (donc plus complexes), ces méthodes sont inopérantes, et on se tourne vers l'obtention de solutions numériques approchées. Plusieurs classes de méthodes d'approximation (différences finies, éléments finis et volumes finis) sont abordées dans la quatrième partie, et testées sur les modèles simples précédemment étudiés. Enfin, le chapitre final est consacré à quelques algorithmes de résolution de systèmes linéaires. Ce livre s'adresse aux étudiants de 3e année de licence et de master en mathématiques appliquées, aux candidats à l'agrégation ainsi qu'aux physiciens et aux ingénieurs désireux de se familiariser avec l'approximation des solutions d'équations aux dérivées partielles.Note de contenu :
Sommaire
Préliminaires
Modèles physiques et EDP
Solutions d'EDP classiques
Schémas aux différences finies pour les EDP
Méthodes d'éléments finis pour les EDP
Volumes finis pour des lois de conservation
Méthodes itératives pour les systèmes linéaires
Repères historiquesCôte titre : Fs/13325-13327,Fs/7094 Exemplaires (4)
Code-barres Cote Support Localisation Section Disponibilité Fs/13325 Fs/13325-13327 Livre Bibliothéque des sciences Français Disponible
DisponibleFs/13326 Fs/13325-13327 Livre Bibliothéque des sciences Français Disponible
DisponibleFs/13327 Fs/13325-13327 Livre Bibliothéque des sciences Français Disponible
DisponibleFs/7094 Fs/7094 livre Bibliothéque des sciences Français Disponible
DisponibleAnalyse, Tome II. Exercices de mathématiques des oraux de l'École polytechnique et des Écoles normales supérieures / Serge Francinou
Titre de série : Analyse, Tome II Titre : Exercices de mathématiques des oraux de l'École polytechnique et des Écoles normales supérieures Type de document : texte imprimé Auteurs : Serge Francinou, Auteur ; Hervé Gianella, Auteur ; Serge Nicolas (1954-....), Auteur Mention d'édition : 3e édition Editeur : Paris : Cassini Année de publication : 2004 Collection : Enseignement des mathématiques num. 13 Importance : 1 vol. (354 p.) Présentation : ill., graph. Format : 23 cm ISBN/ISSN/EAN : 978-2-84225-167-3 Langues : Français (fre) Catégories : Mathématique Mots-clés : Analyse Index. décimale : 515-Analyse mathèmatique Résumé :
Le recueil d'exercices résolus des oraux des Ecoles normales supérieures et de l'Ecole polytechnique de Serge Francinou, Hervé Gianella et Serge Nicolas comprend sept volumes : trois consacrés à l'algèbre et quatre à l'analyse. Le présent volume aborde le coeur du programme d'analyse des concours : intégration, suites et séries de fonctions, séries entières, séries de Fourier. Les auteurs se sont attachés à dégager les idées qui se trouvent à la source des solutions fournies, sans pour autant omettre le détail des vérifications et des calculs. Comme dans les volumes précédents, à côté d'exercices techniques, le lecteur trouvera de nombreux énoncés destinés à établir un résultat mathématique significatif. Les auteurs les ont identifiés, et les resituent dans leur contexte naturel. Un soin tout particulier a été apporté au texte de présentation qui accompagne les exercices, groupés par thèmes. La présentation historique qui ponctue la succession des énoncés montrera au lecteur que l'élaboration des concepts de l'Analyse - qui apparaît aujourd'hui comme un édifice achevé - n'a pas été sans erreurs, hésitations, retours en arrière. D'autre part, certains points du programme parfois négligés par les candidats font l'objet d'utiles rappels. Ce livre s'adresse naturellement aux élèves des classes préparatoires, mais il sera également très utile aux candidats à l'agrégation qui y trouveront de nombreux développements pour leur oral. Ces exercices constituent aussi un excellent complément à la préparation à l'écrit du CAPES.Côte titre : Fs/3674 Analyse, Tome II. Exercices de mathématiques des oraux de l'École polytechnique et des Écoles normales supérieures [texte imprimé] / Serge Francinou, Auteur ; Hervé Gianella, Auteur ; Serge Nicolas (1954-....), Auteur . - 3e édition . - Paris : Cassini, 2004 . - 1 vol. (354 p.) : ill., graph. ; 23 cm. - (Enseignement des mathématiques; 13) .
ISBN : 978-2-84225-167-3
Langues : Français (fre)
Catégories : Mathématique Mots-clés : Analyse Index. décimale : 515-Analyse mathèmatique Résumé :
Le recueil d'exercices résolus des oraux des Ecoles normales supérieures et de l'Ecole polytechnique de Serge Francinou, Hervé Gianella et Serge Nicolas comprend sept volumes : trois consacrés à l'algèbre et quatre à l'analyse. Le présent volume aborde le coeur du programme d'analyse des concours : intégration, suites et séries de fonctions, séries entières, séries de Fourier. Les auteurs se sont attachés à dégager les idées qui se trouvent à la source des solutions fournies, sans pour autant omettre le détail des vérifications et des calculs. Comme dans les volumes précédents, à côté d'exercices techniques, le lecteur trouvera de nombreux énoncés destinés à établir un résultat mathématique significatif. Les auteurs les ont identifiés, et les resituent dans leur contexte naturel. Un soin tout particulier a été apporté au texte de présentation qui accompagne les exercices, groupés par thèmes. La présentation historique qui ponctue la succession des énoncés montrera au lecteur que l'élaboration des concepts de l'Analyse - qui apparaît aujourd'hui comme un édifice achevé - n'a pas été sans erreurs, hésitations, retours en arrière. D'autre part, certains points du programme parfois négligés par les candidats font l'objet d'utiles rappels. Ce livre s'adresse naturellement aux élèves des classes préparatoires, mais il sera également très utile aux candidats à l'agrégation qui y trouveront de nombreux développements pour leur oral. Ces exercices constituent aussi un excellent complément à la préparation à l'écrit du CAPES.Côte titre : Fs/3674 Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité Fs/3674 Fs/3674 Livre Bibliothéque des sciences Français Disponible
DisponibleAnalyse, Tome II. Exercices de mathématiques des oraux de l'École polytechnique et des Écoles normales supérieures / Serge Francinou
PermalinkAnalyse, Tome III. Exercices de mathématiques des oraux de l'Ecole polytechnique et des écoles normales supérieures Analyse 3 / Serge Francinou
PermalinkPermalinkPermalinkExercices de mathématiques des oraux de l'École polytechnique et des écoles normales supérieures, 1. Analyse / Serge Francinou
PermalinkExercices de mathématiques des oraux de l'École polytechnique et des écoles normales supérieures, 2. Analyse / Serge Francinou
PermalinkExercices de mathématiques des oraux de l'Ecole polytechnique et des Ecoles normales supérieures / Serge Francinou
PermalinkExercices de mathématiques des oraux de l'École polytechnique et des écoles normales supérieures. Exercices de mathématiques des oraux de l'Ecole polytechnique et des Ecoles normales supérieures / Serge Francinou
PermalinkPermalinkPermalink