University Sétif 1 FERHAT ABBAS Faculty of Sciences
Détail de l'auteur
Auteur Boucherabine, djihed |
Documents disponibles écrits par cet auteur
Ajouter le résultat dans votre panier Affiner la recherche
Synthesis and Computational Study of New 1H-pyrrol-2-carboxaldehyde [(1E)-(2-hydroxy naphtyl) methylene]hydrazone / Boucherabine, djihed
Titre : Synthesis and Computational Study of New 1H-pyrrol-2-carboxaldehyde [(1E)-(2-hydroxy naphtyl) methylene]hydrazone Type de document : texte imprimé Auteurs : Boucherabine, djihed ; Douniazed HANNACHI, Directeur de thèse Editeur : Setif:UFA Année de publication : 2017 Importance : 1vol. (66f.) Format : 30cm. Catégories : Thèses & Mémoires:Chimie Mots-clés : syntesis,computational,1H-PYRROL-2CARBOXLDEHYDE,methylene,hydrazone Résumé : Conclusion
Quantum chemical calculation results presented above address several
key issues in understanding the structure, IR vibration, UV-vis spectra,
nonlinear optical response, reactivity and protonation mechanism of
the new Azine compounds. On the basis of our studies the following
conclusion can be drawn
-The optimized geometrie of 1H-pyrrol-2-carboxaldehyde [(1E)-(2-hydroxy
naphtyl) methylene]hydrazone with M05-2X functional is in good agreement with the
experimental values
-Comparing the simulated spectra with experimental one, we can notice that
pure B3LYP functional can better reproduce the IR and UV–vis spectra than the
PBEEBE, CAM-B3YP and M05-2X, but empirical dispersion corrections B3LYP-D3
and B3LYP-BJ has better performance than B3LYP.
-The dispersion interactions are largest for Azine-TS and smallest for Azine and
Azine-P. These results reveal that the strengths of dispersion interactions are sensitive
to interaction between H...O and H...N fragments.
-The DFT-D3 dispersion corrections to the thermodynamic energies and kinetic
energies are smaller than the corresponding DFT-BJ dispersion corrections.
- On the other hand and for the first time, our results demonstrate that:
That the polarizabilities and hyperpolarizabilities in solvent phase increase with
the raising of the dipole moment () of the solvated organic compounds and a
large correlation between the (β0 and μ) is obtained.
There is no clear correlation between the dielectric constant of a solvent and its
dipolar moment and the first hyperpolarizability of the title compounds.
Q
58
The rate constants on the protonation process of Azine in solvent phase have a
proportional relation with the dielectric constant of the solvent. On the other
hand, in the backward protonation process the rate constant decrease with the
increasing of the dielectric constant of the solvent.
Our theoretical results demonstrated that, the deprotonation of hydrogen atom
(H2) from the strong cage (H2-O10-C3-C18-C19 and N21) is necessary
condition for the complexation the Azine with metal ion.
We conclude that the title compounds is an attractive object for future studies of
nonlinear optical properties.Note de contenu : Contents
Acknowledgements
iii
List of figures
iv
List of tables
vi
General introduction
1
Reference
2
Chapter 1: Density Functional Theory
I.1.1.The introduction of DFT into chemistry
3
I.1.2.The DFT work in the coordination chemistry lab
4
I.1.2.1.Capabilities of DFT
4
I.2.Basics of the theory of DFT
4
I.3.DFT tools available (Exchange Correlation Functionals)
5
I.3.1. Local density approximation:
7
I.3.2.Generalized-gradient approximation (GGA) :
7
I.3.3.Meta-GGA DFs :
8
I.3.4.Hybrid DFs :
9
I.3.5.Double hybrid DFs
10
I.4.General comments on the most popular density functionals
11
I.5.Jacob’s ladder
12
I.6.Conclusion
14
Reference
15
Chapter 2: results and discussions
II.1. Introduction
17
II.2. Computational method
18
II.2.1. Van der Waals correction
13
II.3. Experimental study
13
II.3.1. The principle
19
II.3.2. General procedure for preparation of Azine
20
II.3.3. The mechanism
21
II.3.4. Spectroscopy
22
II.3.5. Crystal structure determination
24
II.4. Computational study
24
II.4.1. Molecular structures
25
II.4.2. Vibrational modes
26
II.4.2.1. Error analysis of different vibrational calculations
27
II.4.3. Reactivity
28
II.4.3.1. Fukui indices for protonation site identification
29
II.4.3.2. Global reactivity indices
31
II.4.3.3. Local reactivity indices
31
II.4.4. Tautomerization reaction
32
II.4.4.1. H-bond geometries
32
II.4.4.2. Energy barriers and the reaction energies
36
II.4.4.3. The effect of empirical dispersion corrections
37
II.4.5. Nonlinear optical properties
38
ii
II.4.5.1. Polarizability and first hyperpolarizability
40
II.4.5.2. Effect of solvent
45
II.4.5.3. The effect of empirical dispersion corrections
46
II.4.6. TD-DFT
51
II.4.7. Molecular electrostatic potential
53
References
54
conclusion
57
Supplementary-data
59Côte titre : MACH/0048 En ligne : https://drive.google.com/file/d/1MvzzlJ6ec7_qcODQ3gdxypWLWfRhU3tR/view?usp=shari [...] Format de la ressource électronique : Synthesis and Computational Study of New 1H-pyrrol-2-carboxaldehyde [(1E)-(2-hydroxy naphtyl) methylene]hydrazone [texte imprimé] / Boucherabine, djihed ; Douniazed HANNACHI, Directeur de thèse . - [S.l.] : Setif:UFA, 2017 . - 1vol. (66f.) ; 30cm.
Catégories : Thèses & Mémoires:Chimie Mots-clés : syntesis,computational,1H-PYRROL-2CARBOXLDEHYDE,methylene,hydrazone Résumé : Conclusion
Quantum chemical calculation results presented above address several
key issues in understanding the structure, IR vibration, UV-vis spectra,
nonlinear optical response, reactivity and protonation mechanism of
the new Azine compounds. On the basis of our studies the following
conclusion can be drawn
-The optimized geometrie of 1H-pyrrol-2-carboxaldehyde [(1E)-(2-hydroxy
naphtyl) methylene]hydrazone with M05-2X functional is in good agreement with the
experimental values
-Comparing the simulated spectra with experimental one, we can notice that
pure B3LYP functional can better reproduce the IR and UV–vis spectra than the
PBEEBE, CAM-B3YP and M05-2X, but empirical dispersion corrections B3LYP-D3
and B3LYP-BJ has better performance than B3LYP.
-The dispersion interactions are largest for Azine-TS and smallest for Azine and
Azine-P. These results reveal that the strengths of dispersion interactions are sensitive
to interaction between H...O and H...N fragments.
-The DFT-D3 dispersion corrections to the thermodynamic energies and kinetic
energies are smaller than the corresponding DFT-BJ dispersion corrections.
- On the other hand and for the first time, our results demonstrate that:
That the polarizabilities and hyperpolarizabilities in solvent phase increase with
the raising of the dipole moment () of the solvated organic compounds and a
large correlation between the (β0 and μ) is obtained.
There is no clear correlation between the dielectric constant of a solvent and its
dipolar moment and the first hyperpolarizability of the title compounds.
Q
58
The rate constants on the protonation process of Azine in solvent phase have a
proportional relation with the dielectric constant of the solvent. On the other
hand, in the backward protonation process the rate constant decrease with the
increasing of the dielectric constant of the solvent.
Our theoretical results demonstrated that, the deprotonation of hydrogen atom
(H2) from the strong cage (H2-O10-C3-C18-C19 and N21) is necessary
condition for the complexation the Azine with metal ion.
We conclude that the title compounds is an attractive object for future studies of
nonlinear optical properties.Note de contenu : Contents
Acknowledgements
iii
List of figures
iv
List of tables
vi
General introduction
1
Reference
2
Chapter 1: Density Functional Theory
I.1.1.The introduction of DFT into chemistry
3
I.1.2.The DFT work in the coordination chemistry lab
4
I.1.2.1.Capabilities of DFT
4
I.2.Basics of the theory of DFT
4
I.3.DFT tools available (Exchange Correlation Functionals)
5
I.3.1. Local density approximation:
7
I.3.2.Generalized-gradient approximation (GGA) :
7
I.3.3.Meta-GGA DFs :
8
I.3.4.Hybrid DFs :
9
I.3.5.Double hybrid DFs
10
I.4.General comments on the most popular density functionals
11
I.5.Jacob’s ladder
12
I.6.Conclusion
14
Reference
15
Chapter 2: results and discussions
II.1. Introduction
17
II.2. Computational method
18
II.2.1. Van der Waals correction
13
II.3. Experimental study
13
II.3.1. The principle
19
II.3.2. General procedure for preparation of Azine
20
II.3.3. The mechanism
21
II.3.4. Spectroscopy
22
II.3.5. Crystal structure determination
24
II.4. Computational study
24
II.4.1. Molecular structures
25
II.4.2. Vibrational modes
26
II.4.2.1. Error analysis of different vibrational calculations
27
II.4.3. Reactivity
28
II.4.3.1. Fukui indices for protonation site identification
29
II.4.3.2. Global reactivity indices
31
II.4.3.3. Local reactivity indices
31
II.4.4. Tautomerization reaction
32
II.4.4.1. H-bond geometries
32
II.4.4.2. Energy barriers and the reaction energies
36
II.4.4.3. The effect of empirical dispersion corrections
37
II.4.5. Nonlinear optical properties
38
ii
II.4.5.1. Polarizability and first hyperpolarizability
40
II.4.5.2. Effect of solvent
45
II.4.5.3. The effect of empirical dispersion corrections
46
II.4.6. TD-DFT
51
II.4.7. Molecular electrostatic potential
53
References
54
conclusion
57
Supplementary-data
59Côte titre : MACH/0048 En ligne : https://drive.google.com/file/d/1MvzzlJ6ec7_qcODQ3gdxypWLWfRhU3tR/view?usp=shari [...] Format de la ressource électronique : Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité MACH/0048 MACH/0048 Mémoire Bibliothéque des sciences Français Disponible
Disponible