University Sétif 1 FERHAT ABBAS Faculty of Sciences
Détail de l'auteur
Auteur Barrett O'Neill |
Documents disponibles écrits par cet auteur



Titre : Elementary differential geometry Type de document : texte imprimé Auteurs : Barrett O'Neill, Auteur Editeur : Academic press Année de publication : 1966 Importance : 1 vol (411 p.) Format : 24 cm ISBN/ISSN/EAN : 978-0-12-526750-2 Note générale : 0-12-526750-9 Langues : Anglais (eng) Catégories : Mathématique Mots-clés : Mathématique:analyse Index. décimale : 515-Analyse mathèmatique Résumé :
I used this book in the late 1960s, and it still sits in a carton on a shelf in the basement. It is good as a textbook, requiring very little in terms of prior mathematics, just basic calculus. Personally, I think that the author gave 2-forms only passing attention, concentrating on 1-forms. But his goal is the Gauss-Bonnet Theorem, and he is really interested in arbitrary surfaces embedded in Euclidean 3-space. And the path he takes needs 1-forms.Note de contenu :
Sommaire
Calculs on euclidean space
Frame fieid
Euclidean geometry
Caiculus on asurface
Shape operators
Geometry of surfaces
Riemannian geometry
Côte titre : Fs/14393 Elementary differential geometry [texte imprimé] / Barrett O'Neill, Auteur . - Florida : Academic press, 1966 . - 1 vol (411 p.) ; 24 cm.
ISBN : 978-0-12-526750-2
0-12-526750-9
Langues : Anglais (eng)
Catégories : Mathématique Mots-clés : Mathématique:analyse Index. décimale : 515-Analyse mathèmatique Résumé :
I used this book in the late 1960s, and it still sits in a carton on a shelf in the basement. It is good as a textbook, requiring very little in terms of prior mathematics, just basic calculus. Personally, I think that the author gave 2-forms only passing attention, concentrating on 1-forms. But his goal is the Gauss-Bonnet Theorem, and he is really interested in arbitrary surfaces embedded in Euclidean 3-space. And the path he takes needs 1-forms.Note de contenu :
Sommaire
Calculs on euclidean space
Frame fieid
Euclidean geometry
Caiculus on asurface
Shape operators
Geometry of surfaces
Riemannian geometry
Côte titre : Fs/14393 Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité Fs/14393 Fs/14393 livre Bibliothéque des sciences Anglais Disponible
Disponible