Titre : |
Réseaux de Capteurs Sans Fils Véehiculaire S^urs de Fonctionnement |
Type de document : |
texte imprimé |
Auteurs : |
Medani,Khedidja, Auteur ; Aliouat, Makhlouf, Directeur de thèse |
Editeur : |
Setif:UFA |
Année de publication : |
2018 |
Importance : |
1 vol (129 f .) |
Format : |
29 cm |
Langues : |
Anglais (eng) |
Catégories : |
Thèses & Mémoires:Informatique
|
Mots-clés : |
Système de transport intelligent
STI
VANET
WSN
synchronisation d'horloge
synchronisation d'horloge tolérante aux pannes. |
Index. décimale : |
004 - Informatique |
Résumé : |
Résumé
have emerged as an open and interesting research topic over the past decade. The deployment of
VANET systems combined with sensor technologies have increased development benefits
of these. Thus, they allow the collection and sharing of data in real time, so that new applications, such as
traceability reporting, reduced environmental monitoring and distributed monitoring are encouraged. Design
reliable, fault-tolerant, maintainable, safe and secure applications and standards for realistic, large-scale applications
The deployment environment, as in VANETs, ​​presents an extraordinary challenge, especially in the lack of
memory allowing the global recognition of the state of the system. In this context, the clock synchronization requirement
remains one of the most important problems to be solved in the measurement of these reliable systems
evolve The focal point of this PhD thesis is to give an analytical study of clock synchronization
problem in vehicular communication systems. The intrinsic characteristics of the unstable vehicle environment
The high speed of nodes and the lack of permanent network connectivity have created new
challenges and requirements, so the solutions already proposed to synchronize the nodes
physical networks are no longer appropriate. Therefore, new adaptive clock synchronization mechanisms
should be designed and implemented. Here we propose a new mechanism for synchronizing clocks in vehicles
environments, dealing with communication and scalability issues. The proposition, named \O?
Robust Broadcasting" (OTRB), exploits the broadcast channel to broadcast the weather information on
whole network. This protocol is well suited for random network topology changes, high node speed
o offering good accuracy and robustness against node failures and packet loss. Analytical study and protocol
simulation to evaluate system performance, performed by a combination of VanetMobiSim and NS2
simulators, gave convincing results, surpassing those presented by the basic protocols. |
Note de contenu : |
Sommaire
Table of contents viii
List of gures x
List of tables xi
List of algorithms xii
Abbreviations xiii
Introduction 1
Background 8
1 Vehicular communications 8
1.1 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 VANETs' denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 VANETs' applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.1 Safety applications . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.2 Non-safety applications . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.3 A Literature review of VANET's projects . . . . . . . . . . . . . 12
1.4 VANET's characteristics, challenges and requirements . . . . . . . . . . 13
1.5 VANETs layered communication architecture . . . . . . . . . . . . . . . 15
1.5.1 Physical layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5.2 MAC layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.5.3 Network layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.5.4 Transport layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.6 Security plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.7 VANETs simulation and mobility modeling . . . . . . . . . . . . . . . . 28
1.8 Related research topics . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.8.1 Vehicular ad hoc sensor networks (VASNETs) . . . . . . . . . . 29
1.8.2 Vehicular cloud computing (VCC) . . . . . . . . . . . . . . . . . 30
1.8.3 Internet of Vehicle (IoV) . . . . . . . . . . . . . . . . . . . . . . 31
1.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2 VANETs Dependability and practical use of clock synchronization 33
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2 Dependability: Denition and related concepts . . . . . . . . . . . . . . 34
2.3 Failures in vehicular communications . . . . . . . . . . . . . . . . . . . 37
2.4 Timing notions and the practical use of clock synchronization for dependable systems . . . . . . . . .. 39
2.4.1 Clock terminology and basic notions . . . . . . . . . . . . . . . 39
2.4.2 Needs, challenges and requirements of clock synchronization in vehicular communication systems . . . 42
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3 Time synchronization for vehicular communication: A Survey 47
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 Clock synchronization message exchange mechanisms . . . . . . . . . . 49
3.3 Synchronization via GPS/GNSS component . . . . . . . . . . . . . . . 55
3.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.5 Taxonomy of clock synchronization in vehicular ad hoc networks . . . . 59
3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Contributions 74
4 Osets Table Robust Broadcasting for Clock Synchronization in VANETs 74
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2 Time synchronization using time table diusion protocol . . . . . . . . 77
4.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3.1 OTRB algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.3.2 Performances analysis . . . . . . . . . . . . . . . . . . . . . . . 92
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5 Impact of Clustering Stability on the Improvement of OTRB Proto-col 98
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.2 Basic clustering notions and requirements . . . . . . . . . . . . . . . . 100
5.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.4 OTRB protocol overview . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.5 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Conclusion 110
5.7 Future work and perspectives . . . . . . . . . . . . . . . . . . . . . . . 111
Bibliography 112
List of included publications 129 |
Côte titre : |
MAPH/0032 |
En ligne : |
https://drive.google.com/file/d/1aumtsphWsAJNXgMTVZU5cu-ysu1LO0Q7/view?usp=shari [...] |
Format de la ressource électronique : |
pdf |
Réseaux de Capteurs Sans Fils Véehiculaire S^urs de Fonctionnement [texte imprimé] / Medani,Khedidja, Auteur ; Aliouat, Makhlouf, Directeur de thèse . - [S.l.] : Setif:UFA, 2018 . - 1 vol (129 f .) ; 29 cm. Langues : Anglais ( eng)
Catégories : |
Thèses & Mémoires:Informatique
|
Mots-clés : |
Système de transport intelligent
STI
VANET
WSN
synchronisation d'horloge
synchronisation d'horloge tolérante aux pannes. |
Index. décimale : |
004 - Informatique |
Résumé : |
Résumé
have emerged as an open and interesting research topic over the past decade. The deployment of
VANET systems combined with sensor technologies have increased development benefits
of these. Thus, they allow the collection and sharing of data in real time, so that new applications, such as
traceability reporting, reduced environmental monitoring and distributed monitoring are encouraged. Design
reliable, fault-tolerant, maintainable, safe and secure applications and standards for realistic, large-scale applications
The deployment environment, as in VANETs, ​​presents an extraordinary challenge, especially in the lack of
memory allowing the global recognition of the state of the system. In this context, the clock synchronization requirement
remains one of the most important problems to be solved in the measurement of these reliable systems
evolve The focal point of this PhD thesis is to give an analytical study of clock synchronization
problem in vehicular communication systems. The intrinsic characteristics of the unstable vehicle environment
The high speed of nodes and the lack of permanent network connectivity have created new
challenges and requirements, so the solutions already proposed to synchronize the nodes
physical networks are no longer appropriate. Therefore, new adaptive clock synchronization mechanisms
should be designed and implemented. Here we propose a new mechanism for synchronizing clocks in vehicles
environments, dealing with communication and scalability issues. The proposition, named \O?
Robust Broadcasting" (OTRB), exploits the broadcast channel to broadcast the weather information on
whole network. This protocol is well suited for random network topology changes, high node speed
o offering good accuracy and robustness against node failures and packet loss. Analytical study and protocol
simulation to evaluate system performance, performed by a combination of VanetMobiSim and NS2
simulators, gave convincing results, surpassing those presented by the basic protocols. |
Note de contenu : |
Sommaire
Table of contents viii
List of gures x
List of tables xi
List of algorithms xii
Abbreviations xiii
Introduction 1
Background 8
1 Vehicular communications 8
1.1 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 VANETs' denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 VANETs' applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.1 Safety applications . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.2 Non-safety applications . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.3 A Literature review of VANET's projects . . . . . . . . . . . . . 12
1.4 VANET's characteristics, challenges and requirements . . . . . . . . . . 13
1.5 VANETs layered communication architecture . . . . . . . . . . . . . . . 15
1.5.1 Physical layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5.2 MAC layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.5.3 Network layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.5.4 Transport layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.6 Security plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.7 VANETs simulation and mobility modeling . . . . . . . . . . . . . . . . 28
1.8 Related research topics . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.8.1 Vehicular ad hoc sensor networks (VASNETs) . . . . . . . . . . 29
1.8.2 Vehicular cloud computing (VCC) . . . . . . . . . . . . . . . . . 30
1.8.3 Internet of Vehicle (IoV) . . . . . . . . . . . . . . . . . . . . . . 31
1.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2 VANETs Dependability and practical use of clock synchronization 33
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2 Dependability: Denition and related concepts . . . . . . . . . . . . . . 34
2.3 Failures in vehicular communications . . . . . . . . . . . . . . . . . . . 37
2.4 Timing notions and the practical use of clock synchronization for dependable systems . . . . . . . . .. 39
2.4.1 Clock terminology and basic notions . . . . . . . . . . . . . . . 39
2.4.2 Needs, challenges and requirements of clock synchronization in vehicular communication systems . . . 42
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3 Time synchronization for vehicular communication: A Survey 47
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 Clock synchronization message exchange mechanisms . . . . . . . . . . 49
3.3 Synchronization via GPS/GNSS component . . . . . . . . . . . . . . . 55
3.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.5 Taxonomy of clock synchronization in vehicular ad hoc networks . . . . 59
3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Contributions 74
4 Osets Table Robust Broadcasting for Clock Synchronization in VANETs 74
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2 Time synchronization using time table diusion protocol . . . . . . . . 77
4.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3.1 OTRB algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.3.2 Performances analysis . . . . . . . . . . . . . . . . . . . . . . . 92
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5 Impact of Clustering Stability on the Improvement of OTRB Proto-col 98
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.2 Basic clustering notions and requirements . . . . . . . . . . . . . . . . 100
5.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.4 OTRB protocol overview . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.5 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Conclusion 110
5.7 Future work and perspectives . . . . . . . . . . . . . . . . . . . . . . . 111
Bibliography 112
List of included publications 129 |
Côte titre : |
MAPH/0032 |
En ligne : |
https://drive.google.com/file/d/1aumtsphWsAJNXgMTVZU5cu-ysu1LO0Q7/view?usp=shari [...] |
Format de la ressource électronique : |
pdf |
|