|
| Titre : |
Modeling of initial and final correlation effects in double ionization of noble gases and methane: Contribution of the second Born term. |
| Type de document : |
document électronique |
| Auteurs : |
Wafa Sakhraoui, Auteur ; Imene Kada, Directeur de thèse |
| Editeur : |
Sétif:UFA1 |
| Année de publication : |
2025 |
| Importance : |
1 vol (76 f.) |
| Format : |
29 cm |
| Langues : |
Anglais (eng) |
| Catégories : |
Thèses & Mémoires:Physique
|
| Mots-clés : |
Modeling of initial |
| Index. décimale : |
530 - Physique |
| Résumé : |
This thesis investigates the double ionization of atoms and molecules by electron impact, a key process to understanding particle-matter interactions. After introducing the fundamentals of scattering theory and cross-section concepts, the study focuses on double ionization mechanisms (shake-off, two-step 1, and two-step 2), emphasizing the critical role of electron correlation. Several theoretical models, including BBK (3C), DWBA, and 2CWG, are employed to describe the final-state electron dynamics. Applications to atomic (Neon, Krypton) and molecular (CHâ‚„) targets demonstrate good agreement with experimental data, especially when correlation and distortion effects are included, validating the theoretical approach. |
| Note de contenu : |
Sommaire
Chapter I: Scattering Theory...........................................................................................5
I.1 Introduction.................................................................................................................5
I.2 Differential and total cross sections............................................................................6
I.2.1 Scattering Amplitude.............................................................................................6
I.2.2 Transition Matrix………………………………………………………………...8
I.2.3 Differential Cross Sections....................................................................................8
I.2.4 Simple, Double and Triple cross section……………………...…………………9
I.2.5 Fourfold Differential Cross Section ………………………….…………………9
I.2.6 Fivefold Differential Cross Section…………………………………………….10
I.3 Born approximation...................................................................................................10
I.4 Partial Wave Analysis...............................................................................................12
I.4.1 Radial Equation...................................................................................................13
I.4.2 Radial Equation of a Free Particle ......................................................................13
I.5 References................................................................................................................16
Chapter II: Theory of Double Ionization......................................................................17
II.1 Introduction.................................................................................................................17
II.2 The (e,3e) Reaction……………………………………………...………………… 17
II.2.1 Geometries ……………………………………………………………………...18
II.2.1-1 Coplanar Geometries………………………………………………………….18
II.2.1-2 Non Coplanar Geometries…………………………………………………….19
II.2.2 Experimental Relevance…………………………………………………………20
II.3 Double Ionization mechanisms...................................................................................20
II.3.1 The Shake off …………………………………………………..……………….21
II.3.2 Two step one ……………………………………………………..……………..22
II.3.3 Two step two…………………………………………………………....……….23
II.4 Electron Correlation in Double Ionization Process...................................................24
II.4.1 Correlation in the Initial State.............................................................................24
II.4.2 Correlation in the Final State..............................................................................25
II.4.3 Computational Treatment of Correlation........................................................... 25
II.4.4 Structural Correlation in Double Ionization........................................................26
II.4.4.1 Structural Correlation: Interaction Configuration method……....................26
II.5 Theoretical Models for double ionization……………………………………….…27
II.5.1 Models under the First Born Approximation.......................................................27
II.5.1.1 Coulomb Wave Model...................................................................................28
II.5.1.2 Distorted Wave Born Approximation (DWBA) Model ................................28
II.5.1.3 Brauner, Briggs and Klar Model (BBK or 3C)..............................................29
II.5.1.4 Approximate BBK Model 2CWGamow factor .............................................30
II.5.1.5 Limitations of the First Born Approximation ................................................31
II.5.2 The second Born approximation treatement..........................................................31
II.5.2.1 Computational Considerations........................................................................32
II.5.3 The 6C Approach...................................................................................................32
II.5.3.1 Simplification to A6C.....................................................................................33
II.6 Chapter Overview.......................................................................................................33
II.7 References...................................................................................................................34
Chapter III: Application to Noble Gases and Molecules.............................................36
III.1 Introduction.............................................................................................................36
III.2 Description of the DI of noble gases.......................................................................36
III.2.1 FDCS in First Born Approximation (FBA)......................................................36
III.2.2 Interaction Potential........................................................................................37
III.2.3 Description of the Initial State …………………………………………….. 38
III.2.4 Description of the Final State ……………………………………….…….. 41
III.2.4.1 The BBK Model ………………………………………………………. 42
III.2.4.2 The 2CWGamov model ………………………………………………. 44
III.2.4.3 The 2DWG Model (distortion effect) …………………………..…….. .44
III.2.4.4 Calculation of the Variable Charge… ………………………………… 46
III.2.4.5 The 2CWSR Model (Short Range Potential Effect) …………………... 49
III.2.4.6 The 2DWSR Model (Distortion and Short Range Potential Effect)…… 50
III.3 Double Ionization of Methane Molecule................................................................51
III.3.1 FDCS in Second Born Approximation.............................................................51
III.3.1.1 Initial State of methane (CH4) target: Physical Description……..…….. 54
III.3.1.2 Final state description …………………….………….…………………55
III.4 References………………………………………………………………...……..56
Chapter IV: Results and Discussion...............................................................................55
IV.1 Introductions...........................................................................................................55
IV.2 Results of electron impact double ionization of neon ...........................................57
IV.3 Double ionization of Krypton by electron impact ……………………….………63
IV.4 Application to double ionization of methane- CH4 ……………………………...67
IV.5 Conclusion..............................................................................................................71
IV.6 Reference...................................................................................................................73
Conclusion…………………….…………………………………...……………………74 |
| Côte titre : |
Dph/0327 |
Modeling of initial and final correlation effects in double ionization of noble gases and methane: Contribution of the second Born term. [document électronique] / Wafa Sakhraoui, Auteur ; Imene Kada, Directeur de thèse . - [S.l.] : Sétif:UFA1, 2025 . - 1 vol (76 f.) ; 29 cm. Langues : Anglais ( eng)
| Catégories : |
Thèses & Mémoires:Physique
|
| Mots-clés : |
Modeling of initial |
| Index. décimale : |
530 - Physique |
| Résumé : |
This thesis investigates the double ionization of atoms and molecules by electron impact, a key process to understanding particle-matter interactions. After introducing the fundamentals of scattering theory and cross-section concepts, the study focuses on double ionization mechanisms (shake-off, two-step 1, and two-step 2), emphasizing the critical role of electron correlation. Several theoretical models, including BBK (3C), DWBA, and 2CWG, are employed to describe the final-state electron dynamics. Applications to atomic (Neon, Krypton) and molecular (CHâ‚„) targets demonstrate good agreement with experimental data, especially when correlation and distortion effects are included, validating the theoretical approach. |
| Note de contenu : |
Sommaire
Chapter I: Scattering Theory...........................................................................................5
I.1 Introduction.................................................................................................................5
I.2 Differential and total cross sections............................................................................6
I.2.1 Scattering Amplitude.............................................................................................6
I.2.2 Transition Matrix………………………………………………………………...8
I.2.3 Differential Cross Sections....................................................................................8
I.2.4 Simple, Double and Triple cross section……………………...…………………9
I.2.5 Fourfold Differential Cross Section ………………………….…………………9
I.2.6 Fivefold Differential Cross Section…………………………………………….10
I.3 Born approximation...................................................................................................10
I.4 Partial Wave Analysis...............................................................................................12
I.4.1 Radial Equation...................................................................................................13
I.4.2 Radial Equation of a Free Particle ......................................................................13
I.5 References................................................................................................................16
Chapter II: Theory of Double Ionization......................................................................17
II.1 Introduction.................................................................................................................17
II.2 The (e,3e) Reaction……………………………………………...………………… 17
II.2.1 Geometries ……………………………………………………………………...18
II.2.1-1 Coplanar Geometries………………………………………………………….18
II.2.1-2 Non Coplanar Geometries…………………………………………………….19
II.2.2 Experimental Relevance…………………………………………………………20
II.3 Double Ionization mechanisms...................................................................................20
II.3.1 The Shake off …………………………………………………..……………….21
II.3.2 Two step one ……………………………………………………..……………..22
II.3.3 Two step two…………………………………………………………....……….23
II.4 Electron Correlation in Double Ionization Process...................................................24
II.4.1 Correlation in the Initial State.............................................................................24
II.4.2 Correlation in the Final State..............................................................................25
II.4.3 Computational Treatment of Correlation........................................................... 25
II.4.4 Structural Correlation in Double Ionization........................................................26
II.4.4.1 Structural Correlation: Interaction Configuration method……....................26
II.5 Theoretical Models for double ionization……………………………………….…27
II.5.1 Models under the First Born Approximation.......................................................27
II.5.1.1 Coulomb Wave Model...................................................................................28
II.5.1.2 Distorted Wave Born Approximation (DWBA) Model ................................28
II.5.1.3 Brauner, Briggs and Klar Model (BBK or 3C)..............................................29
II.5.1.4 Approximate BBK Model 2CWGamow factor .............................................30
II.5.1.5 Limitations of the First Born Approximation ................................................31
II.5.2 The second Born approximation treatement..........................................................31
II.5.2.1 Computational Considerations........................................................................32
II.5.3 The 6C Approach...................................................................................................32
II.5.3.1 Simplification to A6C.....................................................................................33
II.6 Chapter Overview.......................................................................................................33
II.7 References...................................................................................................................34
Chapter III: Application to Noble Gases and Molecules.............................................36
III.1 Introduction.............................................................................................................36
III.2 Description of the DI of noble gases.......................................................................36
III.2.1 FDCS in First Born Approximation (FBA)......................................................36
III.2.2 Interaction Potential........................................................................................37
III.2.3 Description of the Initial State …………………………………………….. 38
III.2.4 Description of the Final State ……………………………………….…….. 41
III.2.4.1 The BBK Model ………………………………………………………. 42
III.2.4.2 The 2CWGamov model ………………………………………………. 44
III.2.4.3 The 2DWG Model (distortion effect) …………………………..…….. .44
III.2.4.4 Calculation of the Variable Charge… ………………………………… 46
III.2.4.5 The 2CWSR Model (Short Range Potential Effect) …………………... 49
III.2.4.6 The 2DWSR Model (Distortion and Short Range Potential Effect)…… 50
III.3 Double Ionization of Methane Molecule................................................................51
III.3.1 FDCS in Second Born Approximation.............................................................51
III.3.1.1 Initial State of methane (CH4) target: Physical Description……..…….. 54
III.3.1.2 Final state description …………………….………….…………………55
III.4 References………………………………………………………………...……..56
Chapter IV: Results and Discussion...............................................................................55
IV.1 Introductions...........................................................................................................55
IV.2 Results of electron impact double ionization of neon ...........................................57
IV.3 Double ionization of Krypton by electron impact ……………………….………63
IV.4 Application to double ionization of methane- CH4 ……………………………...67
IV.5 Conclusion..............................................................................................................71
IV.6 Reference...................................................................................................................73
Conclusion…………………….…………………………………...……………………74 |
| Côte titre : |
Dph/0327 |
|