University Sétif 1 FERHAT ABBAS Faculty of Sciences
Détail de l'auteur
Auteur Chouarfa, Touba |
Documents disponibles écrits par cet auteur



Titre : Utilisation de Firefly pour la détection de communautés Type de document : texte imprimé Auteurs : Chouarfa, Touba, Auteur ; KAMEL, N, Directeur de thèse Editeur : Setif:UFA Année de publication : 2017 Importance : 1 vol (41f.) Format : 29 cm Langues : Français (fre) Catégories : Thèses & Mémoires:Informatique Mots-clés : Ingénierie des Données
Technologie Web
firefly
détection de communautésIndex. décimale : 004 - Informatique Résumé : Abstract
Empirical analysis of network data has been widely conducted for understanding and
predicting the structure and function of real systems and identifying interesting patterns and
anomalies. One of the most widely studied structural properties of networks is their
community structure. These structures become complex when communities overlap every
time. Many algorithms have been developed to detect such structures. In our dissertation,
we use firefly algorithm to discover community structures. Firefly algorithm is a metaheuristic, based on the light behavior of fireflies. The algorithms we propose generate a
division of the network into groups that contains adjacent elements, and optimize an
objective function that identify the brightest firefly in which the density of these elements
is higher. The space search is explored thanks to the dynamicity of fireflies, where the less
bright firefly move towards the brighter one. The experimentations on real world networks
show that the communities discovered by our approach have a good qualityNote de contenu : Contents
Abstract............................................................................................................................ i
Acknowledgements ........................................................................................................ ii
Contents......................................................................................................................... iii
List of figures................................................................................................................ vii
General introduction ..................................................................................................... 1
1 Community detection................................................................................................ 3
1.1 Introduction..................................................................................................... 3
1.2 Elements of graph theory ................................................................................ 3
1.2.1 Basics definitions..................................................................................... 3
1.2.2 Graph matrices......................................................................................... 4
1.2.3 Real world graphs .................................................................................... 4
1.2.3.1 Social networks................................................................................. 5
1.2.3.2 Biological networks .......................................................................... 6
1.3 Elements of Community Detection................................................................. 6
1.3.1 Definitions of communities...................................................................... 6
1.3.1.1 Local definitions ............................................................................... 7
1.3.1.2 Global definitions.............................................................................. 7
1.3.1.3 Definitions based on vertex similarity .............................................. 7
1.3.2 Community structure................................................................................ 8
1.3.2.1 Basics................................................................................................ 8
1.3.2.2 Modularity......................................................................................... 8
1.3.4 Applications........................................................................................... 10
1.4 Approaches of Community Detection........................................................... 10
1.4.1 Approaches for non-overlapping community detection......................... 11
1.4.1.1 Graph partitioning ........................................................................... 11
1.4.1.2 Hierarchical clustering .................................................................... 11
1.4.1.3 Modularity optimization ................................................................. 12
1.4.2 Approaches for overlapping community detection ................................ 12
1.4.2.1 Link partitioning algorithm............................................................. 12
1.4.2.2 Clique based algorithms.................................................................. 13
1.4.2.3 Fuzzy algorithms............................................................................. 14
1.4.2.4 Local Expansion and Optimization Algorithms.............................. 15
1.4.2.5 Agent-based and dynamic algorithms............................................. 15
1.5 Conclusion .................................................................................................... 16
2 Meta-heuristics for Community detection............................................................ 17
2.1 Introduction................................................................................................... 17
2.2 Meta-heuristics.............................................................................................. 17
2.2.1 Meta-heuristics based unique solution................................................... 17
2.2.1.1 Simulated Annealing....................................................................... 17
2.2.1.2 Tabu search ..................................................................................... 18
2.2.2 Meta-heuristics based population of solutions....................................... 20
2.2.2.1 Evolutionary methods ..................................................................... 20
2.2.2.2 Swarm intelligence methods........................................................... 21
2.3 Firefly algorithm ........................................................................................... 25
2.3.1 Natural behaviors of fireflies ................................................................. 25
2.3.2 Firefly algorithm .................................................................................... 25
2.3.3 Light intensity and attractiveness........................................................... 26
2.4 Metaheuristics for community detection: The state of art ............................ 28
2.5 Conclusion .................................................................................................... 29
3 Proposed algorithms ............................................................................................... 30
3.1 Introduction................................................................................................... 30
3.2 Node-based algorithm................................................................................... 30
3.2.1 Generation of initial population ............................................................. 31
3.2.1.1 Representation of fireflies............................................................... 32
3.2.1.2 Initialization of fireflies population ................................................ 32
3.2.1.3 Extract community structures ......................................................... 32
3.2.2 Objective function.................................................................................. 33
3.2.3 Behavior of fireflies ................................................................................. 34
3.2.3.1 Light intensity and attractiveness.................................................... 34
3.2.3.2 Distance between two fireflies........................................................ 34
3.2.3.3 Movement strategy.......................................................................... 34
3.3 Link-based algorithm .................................................................................... 35
3.3.1 Phase 1: Link communities.................................................................... 36
3.3.1.1 Generation of an initial population ................................................. 36
3.3.1.2 Objective function........................................................................... 38
3.3.2 Phase 2: Nodes communities ................................................................. 39
3.4 Discussion ..................................................................................................... 40
3.5 Implementation ............................................................................................. 40
3.6 Conclusion .................................................................................................... 40
4 Experimentations and results ................................................................................ 42
4.1 Introduction................................................................................................... 42
4.2 Benchmarks................................................................................................... 42
4.2.1 Karate ..................................................................................................... 42
4.2.2 Dolphins................................................................................................. 43
4.2.3 Polbooks................................................................................................. 43
4.2.4 Football .................................................................................................. 43
4.3 Experimental results...................................................................................... 43
4.3.1 Node-based algorithm............................................................................ 43
4.3.2 Link-based algorithm ............................................................................. 45
4.4 Conclusion .................................................................................................... 45
General conclusion....................................................................................................... 46
Bibliography................................................................................................................. 48En ligne : https://drive.google.com/file/d/1rB18zShDjae3vvyJoYI2GtgyKjY7rw1G/view?usp=shari [...] Format de la ressource électronique : Utilisation de Firefly pour la détection de communautés [texte imprimé] / Chouarfa, Touba, Auteur ; KAMEL, N, Directeur de thèse . - [S.l.] : Setif:UFA, 2017 . - 1 vol (41f.) ; 29 cm.
Langues : Français (fre)
Catégories : Thèses & Mémoires:Informatique Mots-clés : Ingénierie des Données
Technologie Web
firefly
détection de communautésIndex. décimale : 004 - Informatique Résumé : Abstract
Empirical analysis of network data has been widely conducted for understanding and
predicting the structure and function of real systems and identifying interesting patterns and
anomalies. One of the most widely studied structural properties of networks is their
community structure. These structures become complex when communities overlap every
time. Many algorithms have been developed to detect such structures. In our dissertation,
we use firefly algorithm to discover community structures. Firefly algorithm is a metaheuristic, based on the light behavior of fireflies. The algorithms we propose generate a
division of the network into groups that contains adjacent elements, and optimize an
objective function that identify the brightest firefly in which the density of these elements
is higher. The space search is explored thanks to the dynamicity of fireflies, where the less
bright firefly move towards the brighter one. The experimentations on real world networks
show that the communities discovered by our approach have a good qualityNote de contenu : Contents
Abstract............................................................................................................................ i
Acknowledgements ........................................................................................................ ii
Contents......................................................................................................................... iii
List of figures................................................................................................................ vii
General introduction ..................................................................................................... 1
1 Community detection................................................................................................ 3
1.1 Introduction..................................................................................................... 3
1.2 Elements of graph theory ................................................................................ 3
1.2.1 Basics definitions..................................................................................... 3
1.2.2 Graph matrices......................................................................................... 4
1.2.3 Real world graphs .................................................................................... 4
1.2.3.1 Social networks................................................................................. 5
1.2.3.2 Biological networks .......................................................................... 6
1.3 Elements of Community Detection................................................................. 6
1.3.1 Definitions of communities...................................................................... 6
1.3.1.1 Local definitions ............................................................................... 7
1.3.1.2 Global definitions.............................................................................. 7
1.3.1.3 Definitions based on vertex similarity .............................................. 7
1.3.2 Community structure................................................................................ 8
1.3.2.1 Basics................................................................................................ 8
1.3.2.2 Modularity......................................................................................... 8
1.3.4 Applications........................................................................................... 10
1.4 Approaches of Community Detection........................................................... 10
1.4.1 Approaches for non-overlapping community detection......................... 11
1.4.1.1 Graph partitioning ........................................................................... 11
1.4.1.2 Hierarchical clustering .................................................................... 11
1.4.1.3 Modularity optimization ................................................................. 12
1.4.2 Approaches for overlapping community detection ................................ 12
1.4.2.1 Link partitioning algorithm............................................................. 12
1.4.2.2 Clique based algorithms.................................................................. 13
1.4.2.3 Fuzzy algorithms............................................................................. 14
1.4.2.4 Local Expansion and Optimization Algorithms.............................. 15
1.4.2.5 Agent-based and dynamic algorithms............................................. 15
1.5 Conclusion .................................................................................................... 16
2 Meta-heuristics for Community detection............................................................ 17
2.1 Introduction................................................................................................... 17
2.2 Meta-heuristics.............................................................................................. 17
2.2.1 Meta-heuristics based unique solution................................................... 17
2.2.1.1 Simulated Annealing....................................................................... 17
2.2.1.2 Tabu search ..................................................................................... 18
2.2.2 Meta-heuristics based population of solutions....................................... 20
2.2.2.1 Evolutionary methods ..................................................................... 20
2.2.2.2 Swarm intelligence methods........................................................... 21
2.3 Firefly algorithm ........................................................................................... 25
2.3.1 Natural behaviors of fireflies ................................................................. 25
2.3.2 Firefly algorithm .................................................................................... 25
2.3.3 Light intensity and attractiveness........................................................... 26
2.4 Metaheuristics for community detection: The state of art ............................ 28
2.5 Conclusion .................................................................................................... 29
3 Proposed algorithms ............................................................................................... 30
3.1 Introduction................................................................................................... 30
3.2 Node-based algorithm................................................................................... 30
3.2.1 Generation of initial population ............................................................. 31
3.2.1.1 Representation of fireflies............................................................... 32
3.2.1.2 Initialization of fireflies population ................................................ 32
3.2.1.3 Extract community structures ......................................................... 32
3.2.2 Objective function.................................................................................. 33
3.2.3 Behavior of fireflies ................................................................................. 34
3.2.3.1 Light intensity and attractiveness.................................................... 34
3.2.3.2 Distance between two fireflies........................................................ 34
3.2.3.3 Movement strategy.......................................................................... 34
3.3 Link-based algorithm .................................................................................... 35
3.3.1 Phase 1: Link communities.................................................................... 36
3.3.1.1 Generation of an initial population ................................................. 36
3.3.1.2 Objective function........................................................................... 38
3.3.2 Phase 2: Nodes communities ................................................................. 39
3.4 Discussion ..................................................................................................... 40
3.5 Implementation ............................................................................................. 40
3.6 Conclusion .................................................................................................... 40
4 Experimentations and results ................................................................................ 42
4.1 Introduction................................................................................................... 42
4.2 Benchmarks................................................................................................... 42
4.2.1 Karate ..................................................................................................... 42
4.2.2 Dolphins................................................................................................. 43
4.2.3 Polbooks................................................................................................. 43
4.2.4 Football .................................................................................................. 43
4.3 Experimental results...................................................................................... 43
4.3.1 Node-based algorithm............................................................................ 43
4.3.2 Link-based algorithm ............................................................................. 45
4.4 Conclusion .................................................................................................... 45
General conclusion....................................................................................................... 46
Bibliography................................................................................................................. 48En ligne : https://drive.google.com/file/d/1rB18zShDjae3vvyJoYI2GtgyKjY7rw1G/view?usp=shari [...] Format de la ressource électronique : Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité MAI/0209 MAI/0209 Mémoire Bibliothéque des sciences Français Disponible
Disponible