University Sétif 1 FERHAT ABBAS Faculty of Sciences
Détail de l'auteur
Auteur Mézard, Marc |
Documents disponibles écrits par cet auteur



Titre : Information, physics, and computation Type de document : texte imprimé Auteurs : Mézard, Marc, Auteur ; Montanari, Andrea, Auteur Editeur : Oxford : Oxford university press Année de publication : 2009 Collection : Oxford graduate texts Importance : 1 vol. (569 p.) Présentation : ill., couv. ill. en coul. Format : 26 cm ISBN/ISSN/EAN : 978-0-19-857083-7 Note générale : 978-0-19-857083-7 Langues : Anglais (eng) Catégories : Physique Mots-clés : Physique statistique
Codage
InformatiqueIndex. décimale : 530.13 Mécanique statistique et physique statistique, Résumé :
Cet ouvrage présente une approche unifiée d'un domaine de recherche riche et en évolution rapide à l'interface entre la physique statistique, l'informatique théorique / les mathématiques discrètes et la théorie de la codification et de l'information. Il est accessible aux étudiants diplômés et aux chercheurs sans formation spécifique dans aucun de ces domaines. Les sujets sélectionnés incluent des verres de rotation, des codes de correction d'erreurs, la satisfaction et sont au centre de chaque champ. L'approche se concentre sur les grands cas aléatoires et adopte une formulation probabiliste commune en termes de modèles graphiques. Il présente des algorithmes de passage de messages tels que la propagation de croyances et la propagation de sondages, et leur utilisation dans le décodage et la résolution de satisfaction de contraintes. Il explique également les techniques d'analyse comme l'évolution de la densité et la méthode de la cavité, et les utilise pour étudier les transitions de phase.Note de contenu :
Sommaire
PART 1 BACKGROUND
1 Introduction to information theory 3
1.1 Random variables 3
1.2 Entropy 5
1.3 Sequences of random variables and their entropy rate 8
1.4 Correlated variables and mutual information 10
1.5 Data compression 12
1.6 Data transmission 16
Notes 21
2 Statistical physics and probability theory 23
2.1 The Boltzmann distribution 24
2.2 Thermodynamic potentials 28
2.3 The fluctuation-dissipation relations 32
2.4 The thermodynamic limit 33
2.5 Ferromagnets and Ising models 35
2.6 The Ising spin glass 44
Notes 46
3 Introduction to combinatorial optimization 47
3.1 A first example: The minimum spanning tree 48
3.2 General definitions 51
3.3 More examples 51
3.4 Elements of the theory of computational complexity 54
3.5 Optimization and statistical physics 60
3.6 Optimization and coding 61
Notes 62
4 A probabilistic toolbox 65
4.1 Many random variables: A qualitative preview 65
4.2 Large deviations for independent variables 66
4.3 Correlated variables 72
4.4 The Gibbs free energy 77
4.5 The Monte Carlo method 80
4.6 Simulated annealing 86
4.7 Appendix: A physicist's approach to Sanov's theorem 87
Notes 89
x Contents
PART II INDEPENDENCE
5 The random energy model 93
5.1 Definition of the model 93
5.2 Thermodynamics of the REM 94
5.3 The condensation phenomenon 100
5.4 A comment on quenched and annealed averages 101
5.5 The random subcube model 103
Notes 105
6 The random code ensemble 107
6.1 Code ensembles 107
6.2 The geometry of the random code ensemble 110
6.3 Communicating over a binary symmetric channel 112
6.4 Error-free communication with random codes 120
6.5 Geometry again: Sphere packing 123
6.6 Other random codes 126
6.7 A remark on coding theory and disordered systems 127
6.8 Appendix: Proof of Lemma 6.2 128
Notes 128
7 Number partitioning 131
7.1 A fair distribution into two groups? 131
7.2 Algorithmic issues 132
7.3 Partition of a random list: Experiments 133
7.4 The random tost model 136
7.5 Partition of a random list: Rigorous results 140
Notes 143
8 Introduction to replica theory 145
8.1 Replica solution of the random energy model 145
8.2 The fully connected p-spin glass model 155
8.3 Extreme value statistics and the REM 163
8.4 Appendix: Stability of the RS saddle point 166
Notes 169
PART III MODELS ON GRAPHS
9 Factor graphs and graph ensembles 173
9.1 Factor graphs 173
9.2 Ensembles of factor graphs: Definit ions 180
9.3 Random factor graphs: Basic properties 182
9.4 Random factor graphs: The giant component 187
9.5 The locally tree-like structure of random graphs 191
Notes 194
10 Satisfiability
197
10.1 The satisfiability problem 197
Contents xi
10.2 Algorithms 199
10.3 Random K-satisfiability ensembles 206
10.4 Random 2-SAT 209
10.5 The phase transition in random K(> 3)-SAT 209
Notes 217
11 Low-density parity-check codes 219
11.1 Definitions 220
11.2 The geometry of the codebook 222
11.3 LDPC codes for the binary symmetric channel 231
11.4 A simple decoder: Bit flipping 236
Notes 239
12 Spin glasses 241
12.1 Spin glasses and factor graphs 241
12.2 Spin glasses: Constraints and frustration 245
12.3 What is a glass phase? 250
12.4 An example: The phase diagram of the SK model 262
Notes 265
13 Bridges: Inference and the Monte Carlo method 267
13.1 Statistical inference 268
13.2 The Monte Carlo method: Inference via sampling 272
13.3 Free-energy barriers 281
Notes 287
PART IV SHORT-RANGE CORRELATIONS
14 Belief propagation 291
14.1 Two examples 292
14.2 Belief propagation an tree graphs 296
14.3 Optimization: Max-product and min-sum 305
14.4 Loopy BP 310
14.5 General message-passing algorithms 316
14.6 Probabilistic analysis 317
Notes 325
15 Decoding with belief propagation 327
15.1 BP decoding: The algorithm 327
15.2 Analysis: Density evolution 329
15.3 BP decoding for an erasure channel 342
15.4 The Bethe free energy and MAP decoding 347
Notes 352
16 The assignment problem 355
16.1 The assignment problem and random assignment ensembles 356
16.2 Message passing and its probabilistic analysis 357
16.3 A polynomial message-passing algorithm 366
xii Contents
16.4 Combinatorial results 371
16.5 An exercise: Multi-index assignment 376
Notes 378
17 Ising models an random graphs
381
17.1 The BP equations for Ising spins 381
17.2 RS cavity analysis 384
17.3 Ferromagnetic model 386
17.4 Spin glass models 391
Notes 399
PART V LONG-RANGE CORRELATIONS
18 Linear equations with Boolean variables
403
18.1 Definitions and general remarks 404
18.2 Belief propagation 409
18.3 Core percolation and BP 412
18.4 The SAT–UNSAT threshold in random XORSAT 415
18.5 The Hard-SAT phase: Clusters of solutions 421
18.6 An alternative approach: The cavity method 422
Notes 427
19 The 1RSB cavity method
19.1 Beyond BP: Many states 430
19.2 The 1RSB cavity equations 434
19.3 A first application: XORSAT 444
19.4 The special value x = 1 449
19.5 Survey propagation 453
19.6 The nature of 1RSB phases 459
19.7 Appendix: The SP(y) equations for XORSAT 463
Notes 465
20 Random K-satisfiability
20.1 Belief propagation and the replica-symmetric analysis
20.2 Survey propagation and the 1RSB phase
20.3 Some ideas about the full phase diagram
20.4 An exercise: Colouring random graphs
Notes
21 Glassy states in coding theory
21.1 Local search algorithms and metastable states
21.2 The binary erasure channel
21.3 General binary memoryless Symmetrie channels
21.4 Metastable states and near-codewords
Notes
22 An ongoing story
22.1 Gibbs measures and Jong-range correlation
Contents xiii
22.2 Higher levels of replica symmetry breaking 524
22.3 Phase structure and the behaviour of algorithms 535
Notes 538
Appendix A Symbols and notation 541
A.1 Equivalence relations 541
A.2 Orders of growth 542
A.3 Combinatorics and probability 543
A.4 Summary of mathematical notation 544
A.5 Information theory 545
A.6 Factor graphs 545
A.7 Cavity and message-passing methods 545
References 547
IndeCôte titre : Fs/13934-13935 Information, physics, and computation [texte imprimé] / Mézard, Marc, Auteur ; Montanari, Andrea, Auteur . - Oxford : Oxford university press, 2009 . - 1 vol. (569 p.) : ill., couv. ill. en coul. ; 26 cm. - (Oxford graduate texts) .
ISBN : 978-0-19-857083-7
978-0-19-857083-7
Langues : Anglais (eng)
Catégories : Physique Mots-clés : Physique statistique
Codage
InformatiqueIndex. décimale : 530.13 Mécanique statistique et physique statistique, Résumé :
Cet ouvrage présente une approche unifiée d'un domaine de recherche riche et en évolution rapide à l'interface entre la physique statistique, l'informatique théorique / les mathématiques discrètes et la théorie de la codification et de l'information. Il est accessible aux étudiants diplômés et aux chercheurs sans formation spécifique dans aucun de ces domaines. Les sujets sélectionnés incluent des verres de rotation, des codes de correction d'erreurs, la satisfaction et sont au centre de chaque champ. L'approche se concentre sur les grands cas aléatoires et adopte une formulation probabiliste commune en termes de modèles graphiques. Il présente des algorithmes de passage de messages tels que la propagation de croyances et la propagation de sondages, et leur utilisation dans le décodage et la résolution de satisfaction de contraintes. Il explique également les techniques d'analyse comme l'évolution de la densité et la méthode de la cavité, et les utilise pour étudier les transitions de phase.Note de contenu :
Sommaire
PART 1 BACKGROUND
1 Introduction to information theory 3
1.1 Random variables 3
1.2 Entropy 5
1.3 Sequences of random variables and their entropy rate 8
1.4 Correlated variables and mutual information 10
1.5 Data compression 12
1.6 Data transmission 16
Notes 21
2 Statistical physics and probability theory 23
2.1 The Boltzmann distribution 24
2.2 Thermodynamic potentials 28
2.3 The fluctuation-dissipation relations 32
2.4 The thermodynamic limit 33
2.5 Ferromagnets and Ising models 35
2.6 The Ising spin glass 44
Notes 46
3 Introduction to combinatorial optimization 47
3.1 A first example: The minimum spanning tree 48
3.2 General definitions 51
3.3 More examples 51
3.4 Elements of the theory of computational complexity 54
3.5 Optimization and statistical physics 60
3.6 Optimization and coding 61
Notes 62
4 A probabilistic toolbox 65
4.1 Many random variables: A qualitative preview 65
4.2 Large deviations for independent variables 66
4.3 Correlated variables 72
4.4 The Gibbs free energy 77
4.5 The Monte Carlo method 80
4.6 Simulated annealing 86
4.7 Appendix: A physicist's approach to Sanov's theorem 87
Notes 89
x Contents
PART II INDEPENDENCE
5 The random energy model 93
5.1 Definition of the model 93
5.2 Thermodynamics of the REM 94
5.3 The condensation phenomenon 100
5.4 A comment on quenched and annealed averages 101
5.5 The random subcube model 103
Notes 105
6 The random code ensemble 107
6.1 Code ensembles 107
6.2 The geometry of the random code ensemble 110
6.3 Communicating over a binary symmetric channel 112
6.4 Error-free communication with random codes 120
6.5 Geometry again: Sphere packing 123
6.6 Other random codes 126
6.7 A remark on coding theory and disordered systems 127
6.8 Appendix: Proof of Lemma 6.2 128
Notes 128
7 Number partitioning 131
7.1 A fair distribution into two groups? 131
7.2 Algorithmic issues 132
7.3 Partition of a random list: Experiments 133
7.4 The random tost model 136
7.5 Partition of a random list: Rigorous results 140
Notes 143
8 Introduction to replica theory 145
8.1 Replica solution of the random energy model 145
8.2 The fully connected p-spin glass model 155
8.3 Extreme value statistics and the REM 163
8.4 Appendix: Stability of the RS saddle point 166
Notes 169
PART III MODELS ON GRAPHS
9 Factor graphs and graph ensembles 173
9.1 Factor graphs 173
9.2 Ensembles of factor graphs: Definit ions 180
9.3 Random factor graphs: Basic properties 182
9.4 Random factor graphs: The giant component 187
9.5 The locally tree-like structure of random graphs 191
Notes 194
10 Satisfiability
197
10.1 The satisfiability problem 197
Contents xi
10.2 Algorithms 199
10.3 Random K-satisfiability ensembles 206
10.4 Random 2-SAT 209
10.5 The phase transition in random K(> 3)-SAT 209
Notes 217
11 Low-density parity-check codes 219
11.1 Definitions 220
11.2 The geometry of the codebook 222
11.3 LDPC codes for the binary symmetric channel 231
11.4 A simple decoder: Bit flipping 236
Notes 239
12 Spin glasses 241
12.1 Spin glasses and factor graphs 241
12.2 Spin glasses: Constraints and frustration 245
12.3 What is a glass phase? 250
12.4 An example: The phase diagram of the SK model 262
Notes 265
13 Bridges: Inference and the Monte Carlo method 267
13.1 Statistical inference 268
13.2 The Monte Carlo method: Inference via sampling 272
13.3 Free-energy barriers 281
Notes 287
PART IV SHORT-RANGE CORRELATIONS
14 Belief propagation 291
14.1 Two examples 292
14.2 Belief propagation an tree graphs 296
14.3 Optimization: Max-product and min-sum 305
14.4 Loopy BP 310
14.5 General message-passing algorithms 316
14.6 Probabilistic analysis 317
Notes 325
15 Decoding with belief propagation 327
15.1 BP decoding: The algorithm 327
15.2 Analysis: Density evolution 329
15.3 BP decoding for an erasure channel 342
15.4 The Bethe free energy and MAP decoding 347
Notes 352
16 The assignment problem 355
16.1 The assignment problem and random assignment ensembles 356
16.2 Message passing and its probabilistic analysis 357
16.3 A polynomial message-passing algorithm 366
xii Contents
16.4 Combinatorial results 371
16.5 An exercise: Multi-index assignment 376
Notes 378
17 Ising models an random graphs
381
17.1 The BP equations for Ising spins 381
17.2 RS cavity analysis 384
17.3 Ferromagnetic model 386
17.4 Spin glass models 391
Notes 399
PART V LONG-RANGE CORRELATIONS
18 Linear equations with Boolean variables
403
18.1 Definitions and general remarks 404
18.2 Belief propagation 409
18.3 Core percolation and BP 412
18.4 The SAT–UNSAT threshold in random XORSAT 415
18.5 The Hard-SAT phase: Clusters of solutions 421
18.6 An alternative approach: The cavity method 422
Notes 427
19 The 1RSB cavity method
19.1 Beyond BP: Many states 430
19.2 The 1RSB cavity equations 434
19.3 A first application: XORSAT 444
19.4 The special value x = 1 449
19.5 Survey propagation 453
19.6 The nature of 1RSB phases 459
19.7 Appendix: The SP(y) equations for XORSAT 463
Notes 465
20 Random K-satisfiability
20.1 Belief propagation and the replica-symmetric analysis
20.2 Survey propagation and the 1RSB phase
20.3 Some ideas about the full phase diagram
20.4 An exercise: Colouring random graphs
Notes
21 Glassy states in coding theory
21.1 Local search algorithms and metastable states
21.2 The binary erasure channel
21.3 General binary memoryless Symmetrie channels
21.4 Metastable states and near-codewords
Notes
22 An ongoing story
22.1 Gibbs measures and Jong-range correlation
Contents xiii
22.2 Higher levels of replica symmetry breaking 524
22.3 Phase structure and the behaviour of algorithms 535
Notes 538
Appendix A Symbols and notation 541
A.1 Equivalence relations 541
A.2 Orders of growth 542
A.3 Combinatorics and probability 543
A.4 Summary of mathematical notation 544
A.5 Information theory 545
A.6 Factor graphs 545
A.7 Cavity and message-passing methods 545
References 547
IndeCôte titre : Fs/13934-13935 Exemplaires (2)
Code-barres Cote Support Localisation Section Disponibilité Fs/13934 Fs/13934-13935 livre Bibliothéque des sciences Anglais Disponible
DisponibleFs/13935 Fs/13934-13935 livre Bibliothéque des sciences Anglais Disponible
Disponible