University Sétif 1 FERHAT ABBAS Faculty of Sciences
Détail de l'auteur
Auteur Asma Rettab |
Documents disponibles écrits par cet auteur



Titre : Groupes dont tous les sous-groupes propres sont (localement finis)-par-nilpotents Type de document : texte imprimé Auteurs : Asma Rettab, Auteur ; Amel Dilmi, Directeur de thèse Editeur : Setif:UFA Année de publication : 2020 Importance : 1 vol (46 f.) Format : 29 cm Langues : Français (fre) Catégories : Thèses & Mémoires:Mathématique Mots-clés : Sous-groupes propres (localement finis)-par-nilpotents
Quotient de Frattini.Index. décimale : 510 - Mathématique Résumé :
L’objectif de ce mémoire est l’étude des groupes dont tous les sous-groupes propres sont
(localement fini)-par-nilpotents. Soit X une classe de groups, un groupe G est dit non-X minimal si
tous les sous-groupes propres de G sont des X-groupe mais G lui-même n’est pas un X-groupe. Le
principal résultat affirme que si c > 0 est un entire et si G est un groupe non-((localement fini)-parnilpotent) (respectivement, non-((localement fini)-par-(nilpotent de classe ≤ c)) minimal, alors G est
un groupe parfait de type fini n’ayant pas d’image non-trivial finie et tel que G/Frat(G) est un groupe
simple infini où Frat(G) désigne le sous-groupe de Frattini de G.Côte titre : MAM/0440 En ligne : https://drive.google.com/file/d/1Zr6YmFw9uaL4cTs8tgjSAxdahdrThH7_/view?usp=shari [...] Format de la ressource électronique : Groupes dont tous les sous-groupes propres sont (localement finis)-par-nilpotents [texte imprimé] / Asma Rettab, Auteur ; Amel Dilmi, Directeur de thèse . - [S.l.] : Setif:UFA, 2020 . - 1 vol (46 f.) ; 29 cm.
Langues : Français (fre)
Catégories : Thèses & Mémoires:Mathématique Mots-clés : Sous-groupes propres (localement finis)-par-nilpotents
Quotient de Frattini.Index. décimale : 510 - Mathématique Résumé :
L’objectif de ce mémoire est l’étude des groupes dont tous les sous-groupes propres sont
(localement fini)-par-nilpotents. Soit X une classe de groups, un groupe G est dit non-X minimal si
tous les sous-groupes propres de G sont des X-groupe mais G lui-même n’est pas un X-groupe. Le
principal résultat affirme que si c > 0 est un entire et si G est un groupe non-((localement fini)-parnilpotent) (respectivement, non-((localement fini)-par-(nilpotent de classe ≤ c)) minimal, alors G est
un groupe parfait de type fini n’ayant pas d’image non-trivial finie et tel que G/Frat(G) est un groupe
simple infini où Frat(G) désigne le sous-groupe de Frattini de G.Côte titre : MAM/0440 En ligne : https://drive.google.com/file/d/1Zr6YmFw9uaL4cTs8tgjSAxdahdrThH7_/view?usp=shari [...] Format de la ressource électronique : Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité MAM/0440 MAM/0440 Mémoire Bibliothéque des sciences Français Disponible
Disponible