University Sétif 1 FERHAT ABBAS Faculty of Sciences
Détail de l'auteur
Auteur Laldja Benziane |
Documents disponibles écrits par cet auteur
Ajouter le résultat dans votre panier Affiner la recherche
Titre : An Analytical Study Of Quasistatic Frictionless Antiplane Problem With Adhesion Type de document : document électronique Auteurs : Amina Arab, Auteur ; Laldja Benziane, Directeur de thèse Editeur : Sétif:UFA1 Année de publication : 2025 Importance : 1 vol (31 f.) Format : 29 cm Langues : Anglais (eng) Catégories : Thèses & Mémoires:Mathématique Mots-clés : Antiplane Shear
Viscoelastic Material
Adhesion Contact
Frictionless ContactIndex. décimale : 510-Mathématique Résumé : Abstract
In this thesis, we consider a mathematical model describing the antiplane shear deformation of a cylinder in frictionless
contact with a rigid foundation. The adhesion between the contact surfaces, induced by a bonding agent, is explicitly
accounted for. The material is assumed to be viscoelastic with long-term memory and nonhomogeneous properties, and
the process is modeled as quasistatic. This work is devided into three chapters. First, we present preliminary results from
functional analysis and partial differential equations, which lay the mathematical foundation for the subsequent
analysis. Next, the second chapter focuses on the mathematical modeling of the antiplane shear deformation problem,
incorporating adhesion effects, viscoelasticity with long-term memory, and matterial nonhomogeneity under
quasistatic assumptions. Finally, the third chapter establishes a variational formulation of the coupled system, a
volterra-type variational equality for the displacement field and an evolution equation for the bonding field..Note de contenu : Contents
Abstract i
Acknowledgements ii
Introduction 1
1 MathematicalTools 3
1.1 FunctionSpaces . ...................................... 3
1.1.1 TheSpaces Cm(Ω) and Lp(Ω) . .......................... 3
1.1.2 TheSobolevSpaces . ............................... 6
1.1.3 Equivalentnormsonthespace H1(Ω) . ...................... 6
1.2 BilinearForminHilbertSpaces . ............................. 7
1.3 DiverseAdditions . ..................................... 8
1.4 Someinequalities . ..................................... 9
1.5 Volterra-typeVariationalEquality . ............................ 10
1.6 Convexfunctions-lowersemi-continuity . ........................ 11
2 MathematicalModelingofAntiplaneShearDeformation 12
2.1 MathematicalModel . ................................... 12
2.2 AFunctionSpaceforAntiplaneProblems . ........................ 17
3 AntiplaneProblemforViscoelasticwithLong-TermMemoryMaterial 20
3.1 MechanicalFormulationoftheProblemandHypotheses . ................ 20
3.1.1 MechanicalFormulation . ............................. 20
3.1.2 Hypotheses . .................................... 21
3.1.3 Variationalformulation . .............................. 23
3.1.4 ProofofTheorem 3.2 . ............................... 25
Conclusion 31Côte titre : MAM/0785 An Analytical Study Of Quasistatic Frictionless Antiplane Problem With Adhesion [document électronique] / Amina Arab, Auteur ; Laldja Benziane, Directeur de thèse . - [S.l.] : Sétif:UFA1, 2025 . - 1 vol (31 f.) ; 29 cm.
Langues : Anglais (eng)
Catégories : Thèses & Mémoires:Mathématique Mots-clés : Antiplane Shear
Viscoelastic Material
Adhesion Contact
Frictionless ContactIndex. décimale : 510-Mathématique Résumé : Abstract
In this thesis, we consider a mathematical model describing the antiplane shear deformation of a cylinder in frictionless
contact with a rigid foundation. The adhesion between the contact surfaces, induced by a bonding agent, is explicitly
accounted for. The material is assumed to be viscoelastic with long-term memory and nonhomogeneous properties, and
the process is modeled as quasistatic. This work is devided into three chapters. First, we present preliminary results from
functional analysis and partial differential equations, which lay the mathematical foundation for the subsequent
analysis. Next, the second chapter focuses on the mathematical modeling of the antiplane shear deformation problem,
incorporating adhesion effects, viscoelasticity with long-term memory, and matterial nonhomogeneity under
quasistatic assumptions. Finally, the third chapter establishes a variational formulation of the coupled system, a
volterra-type variational equality for the displacement field and an evolution equation for the bonding field..Note de contenu : Contents
Abstract i
Acknowledgements ii
Introduction 1
1 MathematicalTools 3
1.1 FunctionSpaces . ...................................... 3
1.1.1 TheSpaces Cm(Ω) and Lp(Ω) . .......................... 3
1.1.2 TheSobolevSpaces . ............................... 6
1.1.3 Equivalentnormsonthespace H1(Ω) . ...................... 6
1.2 BilinearForminHilbertSpaces . ............................. 7
1.3 DiverseAdditions . ..................................... 8
1.4 Someinequalities . ..................................... 9
1.5 Volterra-typeVariationalEquality . ............................ 10
1.6 Convexfunctions-lowersemi-continuity . ........................ 11
2 MathematicalModelingofAntiplaneShearDeformation 12
2.1 MathematicalModel . ................................... 12
2.2 AFunctionSpaceforAntiplaneProblems . ........................ 17
3 AntiplaneProblemforViscoelasticwithLong-TermMemoryMaterial 20
3.1 MechanicalFormulationoftheProblemandHypotheses . ................ 20
3.1.1 MechanicalFormulation . ............................. 20
3.1.2 Hypotheses . .................................... 21
3.1.3 Variationalformulation . .............................. 23
3.1.4 ProofofTheorem 3.2 . ............................... 25
Conclusion 31Côte titre : MAM/0785 Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité MAM/0785 MAM/0785 Mémoire Bibliothèque des sciences Anglais Disponible
DisponibleAnalyse des Problèmes Antiplans Thermo-Électro-Viscoélastiques de Contact avec Frottement / Laldja Benziane
![]()
Titre : Analyse des Problèmes Antiplans Thermo-Électro-Viscoélastiques de Contact avec Frottement Type de document : document électronique Auteurs : Laldja Benziane, Auteur ; Namira Lebri, Directeur de thèse Année de publication : 2023 Importance : 1 vol (109 f .) Format : 29cm Langues : Français (fre) Catégories : Thèses & Mémoires:Mathématique Mots-clés : Matériaux thermo-electro-viscoélastiques
Mémoire longue frottement de Tresca
processus quasistatiqueIndex. décimale : 515 -Analysis Résumé : Ł’objet de cette thèse est l’étude de quelques problèmes aux limites de contact, avec frottement de Tresca, entre un corps déformable et une fondation. Nous nous plaçons dans le cadre des déformations antiplanes et nous étudions des processus quasistatiques pour des matériaux thermo-électro-viscoélastiques. Les résultats que nous obtenons concernant l’existence et l’unicité des solutions faibles. La thèse comporte deux parties. La première partie rappelle quelques résultats préliminaires d’analyse fonctionnelle et d’équations aux dérivées partielles nécessaires pour réaliser la suite de cette thèse. La deuxième partie est consacrée à la modélisation et à l’étude mathématique des problèmes de contact considérés. Côte titre : DM/0185 En ligne : https://drive.google.com/file/d/10B_fNb8JGMiHfP1TYKu1rMg67LIHQkN8/view?usp=drive [...] Format de la ressource électronique : Analyse des Problèmes Antiplans Thermo-Électro-Viscoélastiques de Contact avec Frottement [document électronique] / Laldja Benziane, Auteur ; Namira Lebri, Directeur de thèse . - 2023 . - 1 vol (109 f .) ; 29cm.
Langues : Français (fre)
Catégories : Thèses & Mémoires:Mathématique Mots-clés : Matériaux thermo-electro-viscoélastiques
Mémoire longue frottement de Tresca
processus quasistatiqueIndex. décimale : 515 -Analysis Résumé : Ł’objet de cette thèse est l’étude de quelques problèmes aux limites de contact, avec frottement de Tresca, entre un corps déformable et une fondation. Nous nous plaçons dans le cadre des déformations antiplanes et nous étudions des processus quasistatiques pour des matériaux thermo-électro-viscoélastiques. Les résultats que nous obtenons concernant l’existence et l’unicité des solutions faibles. La thèse comporte deux parties. La première partie rappelle quelques résultats préliminaires d’analyse fonctionnelle et d’équations aux dérivées partielles nécessaires pour réaliser la suite de cette thèse. La deuxième partie est consacrée à la modélisation et à l’étude mathématique des problèmes de contact considérés. Côte titre : DM/0185 En ligne : https://drive.google.com/file/d/10B_fNb8JGMiHfP1TYKu1rMg67LIHQkN8/view?usp=drive [...] Format de la ressource électronique : Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité DM/0185 DM/0185 Thèse Bibliothèque des sciences Français Disponible
Disponible

