University Sétif 1 FERHAT ABBAS Faculty of Sciences
Détail de l'auteur
Auteur Faiçal Ammisaid |
Documents disponibles écrits par cet auteur



Ensemble Deep Learning-based Semantic Segmentation and Classification of Leaves Images for Agricultural Apple and Wheat Diseases’ Detection / Naryméne Kebiche
![]()
Titre : Ensemble Deep Learning-based Semantic Segmentation and Classification of Leaves Images for Agricultural Apple and Wheat Diseases’ Detection Type de document : texte imprimé Auteurs : Naryméne Kebiche, Auteur ; Faiçal Ammisaid, Auteur ; Abdelouahab Moussaoui, Directeur de thèse Année de publication : 2023 Importance : 1 vol (165 f .) Format : 29cm Langues : Français (fre) Catégories : Thèses & Mémoires:Informatique Mots-clés : Plant disease detection
ClassificationIndex. décimale : 004 Informatique Résumé : Providing food for the world’s rapidly expanding population is a challenging
task with Plant diseases reducing food production due to a demand and supply
mismatch, thus,Early detection and appropriate pest control methods are vital to
increase crop yield. This master’s thesis proposes reliable approaches for early detection
and diagnosis of agricultural plant diseases through the analysis of leaf images. The
method uses ensemble deep learning-based semantic segmentation and classification
techniques by including transfer learning of CNN-based architectures, a focus on U-Net
Attention Mechanisms integration also adapting CNN’s and ViT (Segformer) based
encoders, examination of Vision transformers, lastly utilizing ensemble learning to
help enhancing models prediction’s confidence. The study also highlights the limited
availability of datasets for supervised semantic segmentation in the field of agriculture,
resulting in the creation of a new wheat segmentation dataset we conducted Evaluation
on public and new datasets demonstrates the method’s efficacy with interesting semantic
segmentation scores. Notably, the models achieved up to 77.95% (IoU) and 87.58% (Dice
score) for binary semantic segmentation and 98.66% (IoU) and 97.35% (Dice score) for
multi-class segmentation on the ATLDSD dataset. Additionally, the models reached
96.30% (IoU) and 98.11% (Dice score) on the newly annotated wheat dataset.Côte titre : MAI/0699 En ligne : https://drive.google.com/file/d/1lxucKFuuP7fc1NLnHviaxI_tE28yAx43/view?usp=drive [...] Format de la ressource électronique : Ensemble Deep Learning-based Semantic Segmentation and Classification of Leaves Images for Agricultural Apple and Wheat Diseases’ Detection [texte imprimé] / Naryméne Kebiche, Auteur ; Faiçal Ammisaid, Auteur ; Abdelouahab Moussaoui, Directeur de thèse . - 2023 . - 1 vol (165 f .) ; 29cm.
Langues : Français (fre)
Catégories : Thèses & Mémoires:Informatique Mots-clés : Plant disease detection
ClassificationIndex. décimale : 004 Informatique Résumé : Providing food for the world’s rapidly expanding population is a challenging
task with Plant diseases reducing food production due to a demand and supply
mismatch, thus,Early detection and appropriate pest control methods are vital to
increase crop yield. This master’s thesis proposes reliable approaches for early detection
and diagnosis of agricultural plant diseases through the analysis of leaf images. The
method uses ensemble deep learning-based semantic segmentation and classification
techniques by including transfer learning of CNN-based architectures, a focus on U-Net
Attention Mechanisms integration also adapting CNN’s and ViT (Segformer) based
encoders, examination of Vision transformers, lastly utilizing ensemble learning to
help enhancing models prediction’s confidence. The study also highlights the limited
availability of datasets for supervised semantic segmentation in the field of agriculture,
resulting in the creation of a new wheat segmentation dataset we conducted Evaluation
on public and new datasets demonstrates the method’s efficacy with interesting semantic
segmentation scores. Notably, the models achieved up to 77.95% (IoU) and 87.58% (Dice
score) for binary semantic segmentation and 98.66% (IoU) and 97.35% (Dice score) for
multi-class segmentation on the ATLDSD dataset. Additionally, the models reached
96.30% (IoU) and 98.11% (Dice score) on the newly annotated wheat dataset.Côte titre : MAI/0699 En ligne : https://drive.google.com/file/d/1lxucKFuuP7fc1NLnHviaxI_tE28yAx43/view?usp=drive [...] Format de la ressource électronique : Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité MAI/0699 MAI/0699 Mémoire Bibliothéque des sciences Anglais Disponible
Disponible