University Sétif 1 FERHAT ABBAS Faculty of Sciences
Détail de l'auteur
Auteur Oussama houssem eddine Tamourt |
Documents disponibles écrits par cet auteur



Efficient Deep Self-Supervised Learning for Epileptic Seizures Detection Using EEG Signals / Zakarya Boudraf
![]()
Titre : Efficient Deep Self-Supervised Learning for Epileptic Seizures Detection Using EEG Signals Type de document : texte imprimé Auteurs : Zakarya Boudraf, Auteur ; Oussama houssem eddine Tamourt, Auteur ; Abdelouaheb Moussaoui, Directeur de thèse Année de publication : 2023 Importance : 1 vol (48 f .) Format : 29cm Langues : Français (fre) Catégories : Thèses & Mémoires:Informatique Mots-clés : Self-supervised
epilepsyIndex. décimale : 004 Informatique Résumé : When dealing with epileptic seizures electroencephalogram’s (EEG) can
provide essential information about electrical brain activity. Patients with
epilepsy produce an excess of electrical discharges, causing involuntary body
movements along with other unpleasant symptoms. That information allows
us to detect these seizures and help minimize the damage done. However, an
EEG requires extensive knowledge of signal processing in order for medical
practitioners to correctly diagnose a patient. That’s why in recent years machine
learning algorithms have been employed to automatically detect these
seizures. But, in order to train these models, a large dataset of labeled data
is needed which is both expensive and time consuming. In this paper, we propose
three self-supervised learning models that make use of unlabeled data,
while still providing accurate and efficient predictions. Our model performs
competitively with previously published works by achieving an accuracy of
99.08%, sensitivity of 83.33%, and a FPR of 0.06.Côte titre : MAI/0700 En ligne : https://drive.google.com/file/d/1FUXzTw8ZQSN8HsU2J9S4jjfMtCBnM1b2/view?usp=drive [...] Format de la ressource électronique : Efficient Deep Self-Supervised Learning for Epileptic Seizures Detection Using EEG Signals [texte imprimé] / Zakarya Boudraf, Auteur ; Oussama houssem eddine Tamourt, Auteur ; Abdelouaheb Moussaoui, Directeur de thèse . - 2023 . - 1 vol (48 f .) ; 29cm.
Langues : Français (fre)
Catégories : Thèses & Mémoires:Informatique Mots-clés : Self-supervised
epilepsyIndex. décimale : 004 Informatique Résumé : When dealing with epileptic seizures electroencephalogram’s (EEG) can
provide essential information about electrical brain activity. Patients with
epilepsy produce an excess of electrical discharges, causing involuntary body
movements along with other unpleasant symptoms. That information allows
us to detect these seizures and help minimize the damage done. However, an
EEG requires extensive knowledge of signal processing in order for medical
practitioners to correctly diagnose a patient. That’s why in recent years machine
learning algorithms have been employed to automatically detect these
seizures. But, in order to train these models, a large dataset of labeled data
is needed which is both expensive and time consuming. In this paper, we propose
three self-supervised learning models that make use of unlabeled data,
while still providing accurate and efficient predictions. Our model performs
competitively with previously published works by achieving an accuracy of
99.08%, sensitivity of 83.33%, and a FPR of 0.06.Côte titre : MAI/0700 En ligne : https://drive.google.com/file/d/1FUXzTw8ZQSN8HsU2J9S4jjfMtCBnM1b2/view?usp=drive [...] Format de la ressource électronique : Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité MAI/0700 MAI/0700 Mémoire Bibliothéque des sciences Anglais Disponible
Disponible